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Math 137: Algebraic Geometry Preface

0 Preface

This class is from Spring 2023. Meeting times are Monday and Wednesday from 10:30-
11:45am. There is no designated textbook, but we’ll be consulting some standard texts for
inspiration, like Hartshorne, Shafarevich, etc.

Problem sets will be assigned weekly and due every Wednesday. Popa’s office hours will
be Wednesdays from 12-1pm. Office hours and section times for the course assistants can
be found on Canvas. There is no midterm or final exam for this class!

All errors in these notes are attributed to me. I am already aware of a few unfinished
arguments which need some patching. (I couldn’t type fast enough.) If you see anything
wrong or unclear, please let me know at hahnlheem@gmail.com!

1 01/23 - The Story of Algebraic Geometry

1.1 Historical Motivation

Lots of text here, but do not worry – the “math” will come in due time :)

It’s hard to give a good definition of algebraic geometry, but the name suggests that
we’re constructing some bridge between algebra and geometry. This is a lot more familiar
of a notion than you may think: the equation x2 + y2 = 1 is purely an algebraic equation,
but we get a really nice perspective when we think of the equation as carving out a circle
in R2. The circle, in other words, is the set of solutions of the equation x2 + y2 = 1 in the
reals.

So let’s find solutions to polynomial equations more generally. We understand very well
what happens in the settings for polynomials f(x) = 0 in just one variable. If deg f = 1,
it’s just a linear equation, which is elementary school stuff. deg f = 2 is just solving a
quadratic, also easy. A little bit more difficult is when deg f is 3 or 4, but there do exist
formulae for the solutions which use only the fundamental operations and the coefficients of
f . Interesting stuff happens beyond 4 though: Galois theory and the Abel-Ruffini theorem
tells us that there is no such explicit formula for a general deg f ≥ 5 polynomial.

Let’s shift our attention to polynomials f(x, y) = 0 in two variables, or more generally
a system of equations f1(x, y) = · · · = fm(x, y) = 0 of polynomials in two variables. Our
goal is to take this very algebraic setting and relate it to the geometry that arises from
considering the solutions of the given system.

The reals are annoying in terms of finding solutions; we know that in the case for
one variable, you have quadratics which don’t have any real roots at all. Meanwhile, any
polynomial in C is guaranteed to factor into linear terms by the Fundamental Theorem of
Algebra. (C is algebraically closed field, R is not.) So one major advancement in this, if we
may call it, “algebraic geometry” problem, is to work over C rather than over R.

As a simple example, if we consider the solutions of f(x, y) = x2 + y2 over R, we get a
single point (0, 0), whereas over C, we get two lines x − iy = 0 and x + iy = 0, which is a
completely different and more interesting story.
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Math 137: Algebraic Geometry 01/23 - The Story of Algebraic Geometry

The other major advancement to this setting in two variables is to consider the solutions
not in C2 or R2, but over P2, the projective plane. We’ll get to this in due time.

1.2 Formalizing Ideas

Let k be some field (usually we’ll work with something like C, sometimes R). Let f ∈
k[X, Y ]. Then, we define the zero locus of f as exactly that: the set of zeroes of the
polynomial. We notate

C = Z(f) = {(x, y) | f(x, y) = 0} ⊆ k2.

Z stands for the zero locus. Sometimes we notate this as C, as this is a plane algebraic
curve. We also often call k2 = A2 as the affine plane.

Example 1.1

Let f(X, Y ) = X2 + Y 2 + 1. Over R, it has no solutions, but over C, this is a conic
equation, mapping out a circle in the affine plane.

Again, the above example highlights the belief that it is better to work in k = k an
algebraically closed field. In fact, if f ∈ k[x, y] where k = k, then Z(f) is always an
infinite set. (Convince yourself that this is true!) So the geometry that arises is a lot more
interesting than just having a finite collection of points.

1.3 Motivating Projective Space

We mentioned before that the second major advancement in considering our algebraic
geoemtry problem in two variables is considering equations over the projective plane rather
than R, or even C.

Here’s an issue that arises in R or C but is resolved in the projective plane. Consider a
line and a circle over R. The line may be disjoint from the circle, tangent to the circle, or
secant to the circle, corresponding to 0, 1, 2 intersection points, respectively. We don’t like
this inconsistency. Over C, we run into a similar problem when considering intersections of
two circles: they can be disjoint, tangent, intersecting at two points, or intersecting at four
points.

But if we introduce a “point at infinity” for each direction in C2 through 0, we get a
projective plane P2, which will resolve our problems. We’ll define the projective plane more
rigorously later on, so if this doesn’t sound too convincing at the moment, don’t worry.

But just to give a preview of how nice the theory of intersections becomes in the projec-
tive plane, we have a really nice characterization given by Bezout’s Theorem.
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Math 137: Algebraic Geometry 01/23 - The Story of Algebraic Geometry

Theorem 1.2 (Bezout’s Theorem)

Let deg f = d and deg g = e. If C = Z(f), D = Z(g), and one is not contained in the
other, then the number of intersection points of C and D in P2 is always equal to d · e,
counting multiplicities.

As an example, two conic (deg f = 2) equations will always intersect in 2 · 2 = 4 points,
thus resolving our previous problems in R and C.

1.4 Aside: Non-algebraic Fields

Even though we can easily describe R and C geometrically, the study of algebraic geometry
goes beyond these fields, especially in the number theory setting. For example, Q is relatively
“ugly” geometrically, but considering the integer solutions to Xn + Y n = Zn is equivalent
to finding the solutions to f(X, Y ) = Xn + Y n − 1 over Q. As you may know, Fermat’s
Last Theorem characterizes the solutions to this two-variable polynomial, the proof of which
is largely written in the language of algebraic geometry. It is also immensely common in
number theory to find solutions to equations over finite fields Fp – ask me if you’d want to
see this kind of stuff!

For a brief glimpse of the historical story of algebraic geometry, mathematicians like
Zariski and Weil made algebraic geometry a lot more “algebraic” in the early 20th century,
so the study of AG became intricately connected with commutative algebra. (Thus 221 is
a really good class to take if you want to study more algebraic geometry!) Starting around
1950, some really big brained giants like Serre, Grothendieck, Mumford somehow came up
with a radically different way to formulate the notions tossed around in algebraic geometry,
giving birth to the modern perspective, which is what most mathematicians use today. Take
232a/b for a fun time!

On that note, although 137 only covers the classical perspective and is thus not really
used much these days, it is extremely important to help understand the modern perspective,
which oftentimes loses the geometric motivation in all its technicalities and abstractness.

1.5 Plane Algebraic Curves

We now dive into a few definitions.

Definition 1.3 (Affine plane). Let k = k be an algebraically closed field. Then, the
affine plane is

A2
k = {(x, y) | x, y ∈ k}.

Oftentimes, when k is well-understood, we notate as A2.

We saw earlier that a nonconstant polynomial f gives rise to a plane algebraic curve
C = Z(f) ⊆ A2.
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Math 137: Algebraic Geometry 01/23 - The Story of Algebraic Geometry

Definition 1.4 (Degree of curve). The degree of the plane algebraic curve C = Z(f)
is given by deg(f).

You’ll see over time that this class is a lot more algebraic than geometric (thanks to the
work done in the early 20th century), so we’ll be studying a lot of commutative algebra in
this class. This starts now:

Fact 1.5 (Polynomial Rings are UFDs). The ring k[X1, . . . , Xn] is a UFD.

Proof. (Sketch) Appears in any ring theory class, but this follows from k being a field, hence
a UFD, and the fact that R is a UFD implies R[X] is a UFD. (Use Gauss’s Lemma.)

The above fact means that we can always factor any f ∈ k[X1, . . . , Xn] as f = α ·
fn1
1 · · · f

np
p , where each fi is irreducible and α ∈ k.

Definition 1.6 (Irreducible components). Let f ∈ k[X1, . . . , Xn] factored as above.
Then, we say Ci = Z(fi) are the irreducible components of C. Each Ci is an
irreducible curve.

It is useful to describe (irreducible) curves using parameterizations. To illustrate with an
example, the curve given by f(X, Y ) = Y − X2 can be parameterized by t 7→ (t, t2). In
particular, this gives us a very nice isomorphism

A1 ∼−→ C

t 7→ (t, t2).

Plane algebraic curves like above that exhibit parameterizations in one variable are special
enough to warrant their own name:

Definition 1.7 (Rational). An affine plane curve C = Z(f) is rational if there exists
rational functions u(t), v(t) in one variable such that f(u(t), v(t)) = 0 for almost all t.

Remark 1.8. The isomorphism in the case of f(X, Y ) = Y −X2 is strong and often
not the case, even when the curve is rational. Usually, the best we can do is construct
an isomorphism between the affine line and the curve “almost everywhere.” We’ll see
this more explicitly later, but we give an example below.

Example 1.9 (Rational curves)

By definition, every line is rational. It turns out that every conic is also rational. To
give a picture of this, take a conic C and a line ℓ ∼= A1 disjoint from C. Choose any
point P on C. Then, the line connecting P with any point Q ∈ ℓ intersects C at a
unique point, and furthermore, every point on C (except P ) is the intersection of some
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Math 137: Algebraic Geometry 01/25 - Map Between Curves

line between P and a point on ℓ. Thus, then we get an almost-isomorphism between C
and A1, with the point P hindering this from being an isomorphism.

Let’s write this out explicitly. Let C = Z(f) be a conic and fix some (x0, y0) ∈ C.
Consider now the family of lines ℓt : y − y0 = t(x− x0) parametrized by t. Then, C ∩ ℓt is
given by f(x, t(x − x0) + y0) =: f(x, g(x)) = 0, which is a quadratic in x for almost all t.
One root is x0; call the other xt. Working out the details, one can find{

xt = −x0 − A(t)
yt = y0 + t(xt − x0)

as a rational parameterization, where A(t) here is the coefficient of x in f(x, g(x)).

2 01/25 - Map Between Curves

We begin with the setup from last time. Take some f(x, y) ∈ k[x, y] where k = k is
algebraically closed. Denote the plane algebraic curve C = Z(f) ⊆ A2. Recall from last time
that C rational means there exists rational functions u(t), v(t) such that f(u(t), v(t)) = 0.
Lines and conics are both examples of rational functions.

Now suppose C is irreducible (i.e. f is irreducible), and suppose P (X, Y ), Q(X, Y ) ∈
k[X, Y ] such that f ∤ Q. Consider the rational function w(X, Y ) = P (X,Y )

Q(X,Y )
. This is not

always well-defined on all of C as Q(X, Y ) could vanish somewhere on C. However, this
poses minimal problems.

Exercise 2.1. Suppose f, g ∈ k[X, Y ], f is irreducible, and f ∤ g. Then, Z(f) intersects
Z(g) in at most finitely many points.

By the exercise, the zero locus of Q intersects C in only finitely many points, which means
w(X, Y ) is defined on all but finitely many points of C.

Definition 2.2 (Function field of C). Let C = Z(f). The field of rational functions
on C (or the function field of C) is

k(C) =

{
w =

P

Q
: f ∤ Q

}
/ ∼,

where ∼ is given by P1/Q1 ∼ P2/Q2 ⇐⇒ f | P1Q2 − P2Q1.

The f | P1Q2 − P2Q1 condition makes sense because if two rational functions are to be
considered the same on C, then their difference must vanish on C.

We know rational curves can be parameterized by a single variable t. Let’s give a hint
at where this leads: because we’re still working in two variables, we know that k(C) is
generated by the rational functions X, Y . But C gives us an algebraic relation f(x, y) = 0
between the two variables, implying trdegk k(C) = 1. This leads us to a nice characterization
of their function fields:
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Math 137: Algebraic Geometry 01/25 - Map Between Curves

Proposition 2.3

C is rational iff k(C) ∼= k(t).

Proof. Suppose k(C) ∼= k(t). Consider the isomorphism Φ : k(C) → k(t), and call the
images Φ(x) = u(t), Φ(y) = v(t). Then, since f(x, y) = 0, taking the function under
Φ gives f(u(t), v(t)) = 0, so C is rational. For the other direction, we will first define a
homomorphism

Φ : k(C)→ k(t)

w(X, Y ) 7→ w(u(t), v(t)) =
P (u(t), v(t))

Q(u(t), v(t))
,

where u(t), v(t) satisfy f(u(t), v(t)) = 0. (Such a parameterization exists because C is
rational.) By Exercise 2.1, the denominator Q(u(t), v(t)) of w(u(t), v(t)) is nonzero for
almost all t. Further, Φ is well-defined, as we map X 7→ u(t) and Y 7→ v(t) and extend
linearly. We now invoke a theorem from field theory, which says there are no intermediate
fields in a purely transcendental field extension of degree 1:

Theorem 2.4 (Lüroth)

Suppose k ↪→ L ↪→ k(t) with L ̸= k. Then, L ∼= k(t).

Since k(C) trivially contains k and any nontrivial field map is injective, we can invoke

Lüroth’s Theorem on k ↪→ k(C)
Φ
↪−→ k(t) to get the desired result.

Note that this highlights a pretty intricate connection between field theory and geometry.
More generally, if L is some purely transcendental field extension over k with trdegk L =
1, say L = K(X), then a projection map k(X, Y ) ↠ L forces some algebraic relation
f(X, Y ) = 0. We can then view L ∼= k(Z(f)), giving L geometric significance. There is
some correspondence between field extensions L/k with trdegk L = 1 and affine curves.

Exercise 2.5. Suppose C is rational, parametrized by u(t), v(t) (given from Φ : k(C)→
k(t)). Then, except for a finite set of points on C, every (x0, y0) ∈ C has a unique
representative (x0, y0) = (u(t0), v(t0)).

2.1 Singular Points

Now we’re looking at local behavior of these curves. When studying curves and stuff for
the first time in high school calculus, one often started out by reciting names to a bunch of
edge case scenarios. For instance, a curve may have a node, or a cusp. We’ll define these
more rigorously:
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Math 137: Algebraic Geometry 01/25 - Map Between Curves

Definition 2.6 (Singular points). Let f ∈ k[X, Y ] be nonconstant and C = Z(f) ⊆ A2.
A point P ∈ C is singular if

f(P ) =
∂f

∂x
(P ) =

∂f

∂y
(P ) = 0.

Otherwise, we say P is nonsingular, or smooth. If C is nonsingular for all points, we
call it a smooth curve.

Let’s see how this definition makes sense. For convenience, we’ll suppose P = (0, 0) (we
can always make it as such by translation). The partial derivatives being 0 means that
f(X, Y ) = aX2 + bXY + cY 2+ higher order terms.

Example 2.7 (Singular conics)

In the case where f is conic, i.e. deg f = 2, then there are no higher order terms,
so C singular at P = (0, 0) iff f(X, Y ) = aX2 + bXY + cY 2, i.e. f is a product of
linear factors (we’re assuming here k = k). There are two cases: f = gh where g ̸= h,
or f = g2. Geometrically, the former is the union of two lines, while the second is a
“double line.” Giving a better description of the double line leans more into scheme
theory territory, so we stop here.

Example 2.8 (Some cubics: (almost) elliptic curves!)

(These are all examples of curves that would be elliptic curves if there weren’t any
singular points.) Here, we look at two different kinds of singular points. Consider the
curve f = y2 − x3. I’m bad at putting diagrams here, but if you put this into W-A or
something, you’ll see a picture of a curve entirely in the region x ≥ 0, and two curves
intersect “sharply” at the origin.

In contrast, the curve f = y2−x2−x3 is still singular at P = (0, 0) (take the partial
derivatives), but the drawing looks, crudely described, like a fish with tail extending to
infinity. The point is that the curve intersects itself at the origin. Locally, this picture
looks like two lines intersecting, like in the situation f = gh for linear g ̸= h, but the
global picture is different.

Similar to how roots can have multiplicity, there is also a notion of multiplicity for singular
points, which corresponds to our usual notion of multiplicity of root and gives us an indicator
of “how singular a point is.”

Definition 2.9 (Point of multiplicity). P = (0, 0) is a point of multiplicity r on C
if the lowest degree of a nontrivial term in f is r, i.e. r = multC(P ).

Two sanity checks: P ∈ C is singular iff multC(P ) ≥ 2, and multC(P ) ≤ deg(C) for all
P ∈ C. Convince yourself that both are true!
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Math 137: Algebraic Geometry 01/25 - Map Between Curves

Although singular points do sometimes bring about interesting math on their own, we
only want them in very little moderation, since they are cumbersome to deal with. Thank-
fully, this is always the case!

Proposition 2.10

An irreducible plane curve has only finitely many singular points.

Proof. Let C = Z(f), and denote Cx := Z
(
∂f
∂x

)
. If P is singular, then P ∈ C ∩ Cx. If

|C ∩ Cx| < ∞, we are done, else suppose that |C ∩ Cx| = ∞. Invoking our exercise again,
this implies f | ∂f

∂x
, which forces ∂f

∂x
= 0, since deg f > deg ∂f

∂x
. By symmetry, ∂f

∂y
= 0.

If char k = 0, then we may conclude that f is constant, a contradiction. If char k = p,
then we may write f(X, Y ) = g(Xp, Y p). By the freshman’s dream (a + b)p = ap + bp, we
can write g(Xp, Y p) = (h(X, Y ))p, which means f is reducible, a contradiction as well.

2.2 Rational Maps

We’re going to tie up a lot of ideas that’s been floating around today in this final definition,
which will become a very familiar notion by the end of this class.

A rational map is simply a map which is a rational function on each component. Let
C = Z(f) ⊆ A2. Let u, v ∈ k(C) be two rational functions. Then, we can construct a
“map”

C 99K A2

P 7→ (u(P ), v(P )).

The 99K instead of → is intentional: the name is a bit misleading because both u(P ), v(P )
are not necessarily defined on all of C; at best, this is defined for all but finitely many
points. Realizing the image of the “map” as a curve itself, we have:

Definition 2.11 (Rational Maps). Let C = Z(f), B = Z(g) ⊂ A2 with f parameter-
ized by u(t), v(t) and g(u(t), v(t)) = 0. Then, we get a “map” C 99K B ⊆ A2. We call
such a “map” a rational map.

Example 2.12

We already saw an example of this! Take a conic (say a circle/ellipse) and a line ℓ
disjoint from the conic. Choose any point P on the conic. Then, we have a rational
map where, given some Q ̸= P on the conic, Q maps to the intersection of ℓ and the
line connecting P and Q. Note this is defined for all of C except P itself. If you give the
line and conic explicit formulae, it is clear that this map is given by rational functions.

When the map has an inverse, it is called birational.
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Definition 2.13 (Birational). A rational map φ is called birational if ∃ψ : B 99K C
rational map such that φ ◦ ψ = idB and ψ ◦ φ = idC whenever defined. In this case, B
and C are also called birational.

Thus, we may summarize a previous result very succinctly now: C is rational iff C is
birational to A1.

3 01/30 - Plane Curves, continued

This will be the last lecture of discussing these algebraic geometry phenomena via the
specific case of plane curves, i.e. after today, we’ll venture into situations with more than
just two variables.

Consider C = Z(f) and D = Z(g) in A2, and suppose C is irreducible, C ̸⊂ D.

Definition 3.1 (Intersection multiplicity). Let p ∈ C be a smooth point. The inter-
section multiplicity of C and D at p is defined as the multiplicity of p as a zero of
g|C . We denote it as iP (C,D).

This may not be entirely clear of a definition at first. We do know the case when f(x, y) =
y+h(x), i.e. when we can express y in terms of x, in which case g(x, y)|C = g(x,−h(x)) and
we can count multiplicity of the root. We’ll define the intersection multiplicity in the general
case later, but to complete the discussion in two variables, one may look at Shafarevich p.
13-14.

For now, though, we’ll only consider the case when C is a line, in which case our definition
is clear. Let’s consider C = (y = 0) and D = (y − x2 = 0). Graphically, C is a tangent line
to the parabola D; we expect the intersection multiplicity to be 2. Indeed, iP (C,D) is the
multiplicity of 0 as a root of x2, which is 2.

As one knows from calculus, we can always find a tangent line at a smooth point. We’ll
compute this explicitly.

Claim 3.2 (Tangent line to C at p). Let p = (x0, y0) ∈ C = Z(f) is a smooth point.
Then, there exists a unique line L through p at iP (L,C) ≥ 2.

We then define the tangent line at p as the above unique line.

Proof. A line L passing through p = (x0, y0) can be parameterized by x = x0 + λt and
y = y0 + µt, where t ∈ k. (λ, µ ∈ k are fixed.) We may write

f(x, y) = a(x− x0) + b(y − y0) + g(x, y)

where g(x0, y0) = 0 and g consists of terms of deg ≥ 2. We know at least one of a, b is
nonzero since p is smooth. Restricting f to the line L, we get

f |L = (aλ+ bµ)t+ t2φ(t)
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for some function φ on t. By definition, iP (L,C) ≥ 2 ⇐⇒ aλ+ bµ = 0, which gives us the
unique line L = a(x− x0) + b(y − y0) = ∂f

∂x
(x0, y0) · (x− x0) + ∂f

∂y
(x0, y0) · (y − y0).

Remark 3.3. It may happen that we have iP (L,C) ≥ 3 for the tangent line L. Such
a point p is called an inflection point, or flex.

Example 3.4 (Flex on ’em)

Consider f(x, y) = y − y3 − x3 and L = (y = 0). We have (0, 0) is a smooth point on
C = Z(f), with ∂f

∂y
= 1 and ∂f

∂x
= 0. Thus, iP (L,C) = f |L is the multiplicity of 0 as a

root of x3, which is 3. Thus, the origin is a flex point.

3.1 Projective Plane Curves

We’ll now begin working in P2 instead of A2. We already got a taste of the healthy benefits
of P2 in Bezout’s Theorem (1.2).

First, it would help if we explicitly define the projective plane. We’ll assume k = k
unless otherwise specified. The projective plane is defined as

P2 = (P2
k) := (A3 \ {0})/k∗ = (A3 \ {0})/ ∼,

where (x1, y1, z1) ∼ (x2, y2, z2) ⇐⇒ ∃λ ∈ k∗ such that x2 = λx1, y2 = λy1, z2 = λz1.
Colloquially, we are taking the space of lines through 0 in A3, which justifies why we are
quotienting by scalar multiplication and removing the origin. We will use homogeneous
coordinates (x : y : z) to notate points in P2, so (x0 : y0 : z0) denotes the equivalence class
of (x0, y0, z0) ∈ A3.

We have a nice way of relating An with Pn (we’ll stick with n = 2 for now). There is
an injection A2 ↪→ P2 sending (x, y) 7→ (x : y : 1). (Quick sanity check: verify that this
is injective!) Furthermore, we know how to specify the complement of the image of this
injection, which gives us

P2 = A2
z ∪ {(x : y : 0) | x, y ∈ k, (x, y) ̸= (0, 0)}.

We denote the last set as L∞ and call it the “line at infinity.” This is what we meant in
the first lecture when we “added a point at infinity” to every direction through the origin.

Note that our choice of fixing z = 1 was arbitrary: we could define A2
x = {(1 : y : z)}

and likewise for A2
y. We have P2 = A2

x∪A2
y ∪A2

z. This will be a general phenomenon, which
we’ll see later: we can cover a projective variety by affine varieties. I know, I know, we
haven’t defined what a variety is yet, but you can think of a variety as a generalization of
a plane algebraic curve, i.e. it is some zero locus.

Speaking of plane curves...
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Definition 3.5 (Projective plane curve). A projective plane curve is the zero locus
of a nonconstant homogeneous polynomial F ∈ k[X, Y, Z]. (Homogeneous of deg d
means all the monomials of F have deg d, i.e. F (λx, λy, λz) = λd · F (x, y, z) for all
λ ∈ k.

We just talked about multiplicity and intersection multiplicity for curves in affine space.
How well do these notions port over in projective space?

This is why we want to consider only homogeneous polynomials. If F is homogeneous,
then it makes sense to say that (x : y : z) is a zero of F , because if (x, y, z) ∈ A3 is a zero
of F , then so is (λx, λy, λz). So talking about zeroes is well-understood, and then we can
proceed with talking about multiplicity of zeroes and intersection multiplicity.

We have a process of homogenization, which allows us to construct a homogeneous
polynomial given some arbitrary polynomial. This allows us to take a curve in A2 and define
its projective closure C ⊆ P2. Suppose C = Z(f(x, y) = 0) ⊆ A2 and deg f = n. Then,
we can define

F (x, y, z) = zn · f(x/z, y/z).

This is homogeneous! For a simple example, we could take f(x) = ax2+ bx+ c and consider
F (x, y) = y2(a · (x/y)2+b · (x/y)+c). As said above, F defines a curve C = Z(F = 0) ⊆ P2.
Note that F (x, y, 1) = f(x, y), so C = C ∩ A2

z.

We can also go the other direction. Suppose F (x, y, z) is a homogeneous polynomial of
deg n, which defines a curve C ⊆ P2. Then, we can take the affine curves C ∩ A2

x ⊆ A2

defined by F (1, y, z), and likewise for y and z.

3.2 Smooth Points and Tangent Lines in Projective Plane

We’ll define smooth points and tangent lines for projective plane curves. Recall if C =
Z(f) ⊆ A2, then a smooth point p(x0, y0) ∈ C has a unique tangent line at p given by
∂f
∂x
(x0, y0) · (x− x0) + ∂f

∂y
(x0, y0) · (y − y0).

Now let C = Z(F ) ⊆ P2, where F is homogeneous of degree n. Let’s first define
smooth points. Take p ∈ C, and WLOG suppose p ∈ A2

z, so p = (x0 : y0 : 1). Defining
f(x, y) = F (x, y, 1), we can now treat it as in the affine case: ∂F

∂x
(x, y, 1) = ∂f

∂x
(x, y) and

∂F
∂y
(x, y, 1) = ∂f

∂y
(x, y). We now have an understanding of partial derivatives in projective

plane, which allows us to define a point to be singular if the partials of F at p are all 0, i.e.
∂F
∂x
(p) = ∂F

∂y
(p) = ∂F

∂z
(p) = 0. A point is nonsingular, or smooth, if it is not singular.

Exercise 3.6. Let char k = 0. If F is a homogeneous polynomial of degree n, then we
have Euler’s formula

n · F = X · ∂F
∂x

+ Y · ∂F
∂y

+ Z · ∂F
∂z

.
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Exercise 3.7. If we homogenize ∂f
∂x
(x0, y0) · (x− x0) + ∂f

∂y
(x0, y0) · (y− y0) with respect

to z and use Euler’s formula, then the tangent line to C at p in P2 is given by

L :
∂F

∂x
(x0, y0, 1) · (x− x0) +

∂F

∂y
(x0, y0, 1) · (y − y0) +

∂F

∂z
(x0, y0, 1) · (z − 1) = 0.

We’ll now return to Bezout’s Theorem, first giving a more preliminary version only involving
projective plane curves.

Theorem 3.8 (Bezout’s Theorem)

Let C,D be projective plane curves, C smooth, C ̸⊂ D. Then,∑
P∈C∩D

iP (C,D) = degC · degD.

We’ll give examples and prove it for lines and conics next time.

4 02/01 - From Curves to the General Setting

Happy February! We’ll open with looking at cubic curves. In the affine case, a cubic
curve is defined by a degree 3 polynomial f ∈ k[x, y]. It turns out that a simple change of
coordinates, we can do even better: we can write f as y2 = x3+ ax2+ bx+ c, and the curve
defined by this equation is birational to Z(f). We call this form the Weierstrass normal
form.

We can improve from this even more. Sending x 7→ x − a
3
gives the equation y2 =

x3 + px + q for some p, q ∈ k. We will refer to this resulting curve by Cst, where the “st”
denotes that the curve is in “standard form.” We now see when Cst is smooth:

Lemma 4.1

Cst is smooth if and only if 4p3 + 27q2 ̸= 0. (Here, assume char k ̸= 0.)

Proof. Note that ∂f
∂y

= 2y = 0 ⇐⇒ y = 0. Let g(x) = x3 + px. This means that if (x0, 0)

is a singular point of the curve, then g(x0) = 0 and ∂g
∂x
(x0) = 0. Thus, g has a multiple root

at x0, which occurs iff the discriminant ∆ = 4p3 + 27q2 of g is 0.

If 4p3 + 27q2 ̸= 0 (i.e. Cst is smooth), we call Cst an elliptic curve.

From your homework, you may observe that any irreducible singular cubic is rational
(e.g. y2 = x3, y2 = x3+x2), but since elliptic curves are required to be smooth, we have the
following:

Hahn Lheem Page 15



Math 137: Algebraic Geometry 02/01 - From Curves to the General Setting

Proposition 4.2

Elliptic curves are not rational.

Proof. Say Cst : y2 = x3 + px + q were rational, i.e. birational to A1. Consider a map
A1 φ−→ A1 = k. Then, we can write φ(x) = P (x)

Q(x)
= z ∈ k means P (x) − Q(x) · z = 0. The

only way to have exactly one solution in x for any z is if P,Q are linear polynomials. Letting
P (x) = ax+ b and Q(x) = cx+ d, we can solve for the fixed points via ax+ b = x(cx+ d),
which is just solving a quadratic. Thus, there are at most 2 fixed points.

In contrast, if we could find some map Cst → Cst which fixes more than two points, then
we’d be done. But this is easy: consider the involution (i.e. a map that, when composed
to itself, gives the identity) (x, y) 7→ (x,−y).

4.1 Bezout’s for a Line

We’ll now prove Bezout’s theorem in the special case of intersection between a line and a
curve. This, we’ll see, is simply a generalization of the Fundamental Theorem of Algebra in
this case.

Theorem 4.3 (Baby version of Theorem 3.8)

Let C = L ⊆ P2 be a line and D ⊆ P2 a curve of degree d such that L ̸⊂ D, i.e.
|L ∩D| <∞. Then, ∑

P∈L∩D

iP (L,D) = d.

Proof. To make our lives easier from the start, we will change coordinates such that L =
(y = 0) and the line at infinity is L∞ = (z = 0). (This is an exercise – convince yourself
that we can do this!) Further, L∞ doesn’t pass through the intersection points of L and D.

Considering the curve in affine space A2
z, D is given by some f(x, y) = 0 where deg f = d.

Write f = fd+fd−1+· · ·+fe, where fi are the terms of degree i. Note that (1 : 0 : 0) ∈ L∩L∞,
so it cannot lie on D. But then this means fd must contain some term of the form adx

d

(ad ̸= 0), otherwise when homogenized, y, z will appear in every term, giving (1 : 0 : 0) ∈ D.

This means that iP (L,D) is the multiplicity of P as a root of f |L=(y=0), which is simply
a deg d polynomial in one variable x. Summing over all P in the intersection, we have∑
iP (L,D) is the sum of the multiplicities of all roots of f |K in x of degree d, which by the

Fundamental Theorem of Algebra is simply d, as desired.

We’re going to see an application of Bezout’s theorem, which some may be familiar with
in an olympiad geometry setting! Projective geometry is very powerful.
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Theorem 4.4 (Pascal’s Theorem)

Let C be a conic with a hexagon x1, . . . , x6 inscribed in C. Denote ℓi as the line between
xi−1 and xi, and let P = ℓ1∩ℓ4, Q = ℓ2∩ℓ5, and R = ℓ3∩ℓ6. Then, P,Q,R are collinear.

One can prove this using some clever constructions or other more elementary methods, but
this turns out to be a direct consequence of Bezout’s.

Proof. For any t ∈ k, consider the cubic Ct := (ℓ1ℓ3ℓ5 + t · ℓ2ℓ4ℓ6 = 0). Note that xi lies on
the lines ℓi and ℓi+1, which means x1, . . . , x6 ∈ Ct for any t. Now, fix some p distinct from
the xi’s. Then, we may find some s ∈ k such that p ∈ Cs. [justify this]

But then now, we have seven points x1, . . . , x6, p ∈ Cs. But Bezout’s Theorem tells us
that if C ̸⊂ Cs, then there can only be 6 intersection points, which means C ⊂ Cs. Given
that degCs = 3 and degC = 2, this means Cs decomposes into the conic C and a line L.
The conclusion follows from the fact that P,Q,R /∈ C, so they must lie on the line L.

Now we will formally graduate from looking at baby examples and begin the general
study.

4.2 Affine Varieties

Generalization of the affine plane:

Definition 4.5 (Affine space). Let k = k. The affine space over k is

An = (An
k) := {(a1, . . . , an) | ai ∈ k}.

Thus, we can understand a polynomial f ∈ k[x1, . . . , xn] as a function f : An → k. This
means that the zero locus of f will carve out a subset of An, which we dealt with extensively
when n = 2. We’ll generalize, not just n, but the number of functions we’re considering:

Definition 4.6. Let S ⊆ k[x1, . . . , xn] be a subset. Then, the zero set of S is

Z(S) := {x ∈ An | f(x) = 0 ∀ f ∈ S}.

Definition 4.7 (Algebraic Set). A subset X ⊆ An is called an algebraic set if ∃S ⊆
k[x1, . . . , xn] such that X = Z(S).

Example 4.8

In A3, the zero locus of f = XY is the union of two planes X = 0 and Y = 0,
and the zero locus of f = X2 + Y 2 − 1 is a cylinder. Combining, the algebraic set
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X = Z(XY,X2 + Y 2 − 1) ⊆ A3 is the intersection of the two planes with the cylinder,
which gives four disjoint lines.

So what we’ve laid out so far is not anything new – we knew that a cylinder could be given
by x2+y2−1 = 0 since high school – but we’re just making this connection between algebra
and geometry explicit.

Remark 4.9. Some algebraic sets (not necessarily hypersurfaces) can be parameterized.
For instance, the image of the map φ : A1 → A3 sending t 7→ (t, t2, t3) carves out what
we call the “twisted cubic” in A3. We can write out the twisted cubic explicitly as a
zero locus: C = Z(Y −X2, Z −X3).

Let’s lay out our first algebra definition. Recall:

Definition 4.10 (Noetherian ring). A ring R (commutative with unity) isNoetherian
if every ideal in R is generated by finitely many elements. Equivalently, R has the
ascending chain condition (ACC) on ideals, i.e. every ascending chain of ideals I1 ⊆
I2 ⊆ · · · ⊆ Ik ⊆ · · · ⊆ R stabilizes, i.e. Ik = Ik+1 = · · · for some k.

Noetherian rings are fundamental because polynomial rings are one of the most fundamental
examples of Noetherian rings, a consequence of the Hilbert Basis Theorem:

Theorem 4.11 (Hilbert Basis Theorem)

If R is Noetherian, then R[X] is Noetherian.

The proof of this is nifty, and perhaps I’ll present it in section.

5 02/06 - Building to Hilbert’s Nullstellensatz

5.1 Zariski Topology

We continue our discussion of affine varieties from last time. Recall that we are now able to
take the zero locus of not just a single function, but of a subset of k[x1, . . . , xn]. Note that
given subset S ⊆ k[X1, . . . , Xn], we can construct the ideal I(S) ≤ k[X1, . . . , Xn] generated
by elements of S. This is of interest to us because of the following:

Lemma 5.1

Z(S) = Z(I(S)).

Proof. Pretty straightforward. ⊇ is clear; for ⊆, if x ∈ Z(S), then fi(x) = 0 for all fi ∈ S.
Take h =

∑
gifi ∈ I(S). Clearly, h(x) = 0, so x ∈ Z(I(S)).
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Thus, all algebraic sets are the zero set of some ideal I ⊆ k[X1, . . . , Xn]. We now provide
some basic facts about algebraic sets.

Lemma 5.2

Algebraic sets satisfy the following properties:

1. ∅ and An are algebraic sets.

2. If S1 ⊆ S2, then Z(S2) ⊆ Z(S1).

3. If (Si)i∈I is a family of subsets, then

⋂
i∈I

Z(Si) = Z

(⋃
i∈I

Si

)
.

4. If S1, S2 are subsets, then Z(S1) ∪ Z(S2) = Z(S1 · S2).

Proof. Properties 1, 2, 3 are left as an exercise to the reader. For (4), we prove inclusion in
both directions. For ⊆, if x ∈ Z(S1) ∪ Z(S2), then ∀ f1 ∈ S1, f2 ∈ S2, we have f1(x) = 0
or f2(x) = 0. But this means f1f2(x) = 0 =⇒ x ∈ Z(S1 · S2). For the reverse direction,
replace x ∈ . . . with x /∈ . . . and = 0 with ̸= 0 and the argument should follow.

Great. These properties seem pretty unassuming, but we can glean from the above
lemma that (1) ∅,An are algebraic sets, (2) arbitrary intersections of algebraic sets are alge-
braic sets, and (3) finite unions of algebraic sets are algebraic sets! This means that

There exists a topology on An where closed sets are the
algebraic sets.

This topology is called the Zariski topology. This is the basis of all of algebraic geometry,
and it’s difficult to overstate its importance.

The Zariski topology is kinda bad as a topology though. First, it is much coarser than
the standard topology: all closed subsets in the Zariski topology are closed in the classical
topology. Furthermore, this topology is not Hausdorff: that is, any two open subsets will
intersect. So the open subsets are a bit “weaker”/don’t give us as much information, because
they aren’t as refined locally.

Example 5.3 (Zariski topology)

In A1, the closed sets of the Zariski topology are ∅,A1, and finite sets of points. This is
because k[x] is a PID, so any ideal is of the form (f), and Z(f) for nonconstant f are
simply the roots of f , of which there are only finitely many. In A2, the closed sets are
∅, A2, and plane curves union with finite sets of points.
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5.2 Topological Properties

Naturally, we can define the subspace topology on any X ⊆ An given the Zariski topology
on An. We continue with more topological properties:

Definition 5.4 (Irreducible). A topological space X is irreducible if there are no
proper closed subsets X1, X2 such that X = X1 ∪X2. Otherwise, it is reducible.

This is a pretty useless notion in the usual topology; for instance, we can divide up C by
the disk (with boundary) of radius 1 and the complement of the interior of said disk. But
here, the notion of irreducibility is important. In fact, this directly gives us our main object
of focus in this class.

Definition 5.5 (Affine Variety). An irreducible affine algebraic set is called an affine
variety.

Example 5.6 (Affine varieties)

If f ∈ k[X1, . . . , Xn] is irreducible, then Z(f) ⊆ An is an affine variety. We call Z(f) a
hypersurface in An. On the other hand, if we have something likeX = Z(xz, yz) ⊆ A3,
then we see that this is the union of the plane (z = 0) and the line (x = y = 0), so it is
reducible. Finally, the twisted cubic curve given by the image of A1 → A3, t 7→ (t, t2, t3)
is an affine variety.

Another important property with respect to the Zariski topology:

Definition 5.7 (Noetherian). A topological space is Noetherian if any descending
class of closed subsets X ⊃ X1 ⊃ X2 ⊃ . . . is stationary (i.e. ∃ k0 such that ∀ k ≥ k0,
Xk = Xk+1).

We’ll see that algebraic sets are Noetherian topological spaces, once we explicitly provide
the useful correspondence between algebraic sets and ideals. But for now, we give a very
nice characterization of Noetherian spaces:

Proposition 5.8

Every Noetherian space can be written as a finite union X = X1∪· · ·∪Xr of irreducible
closed subsets. If we assume Xi ̸⊂ Xj for all i ̸= j, then the decomposition is unique
(up to reordering).

Proof. Suppose X is a Noetherian space not satisfying the proposition. Then, we must be
able to write X = X1 ∪X ′

1 such that one of X1, X
′
1 doesn’t satisfy the proposition. WLOG

let it be X1. Then, we must be able to write X1 = X2 ∪ X ′
2 such that one of X2, X

′
2

doesn’t satisfy. WLOG let it be X2. We continue ad infinitum to get a descending chain
X ⊋ X1 ⊋ X2 ⊋ · · · , a contradiction to X being Noetherian.
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For uniqueness, suppose for contradiction that X = X1∪· · ·∪Xr = X ′
1∪· · ·∪X ′

s, where
allXi, X

′
j are irreducible closed subsets. We induct on r. This means thatX1 ⊂ X ′

1∪· · ·∪X ′
s,

so

X1 =
s⋃

j=1

(X1 ∩X ′
j).

But X1 is irreducible by hypothesis, so ∃ j such that X1 ⊂ X ′
j. By symmetry, ∃ i such that

X ′
j ⊂ Xi. But then X1 ⊂ X ′

j ⊂ Xi, which is only possible if i = 1 and X1 = X ′
j. Reindexing

such that j = 1, we can throw out X1, X
′
1 and look at

Z = X \X1 = X2 ∪ · · · ∪Xr

= X ′
2 ∪ · · · ∪X ′

s.

The inductive hypothesis finishes the problem.

Definition 5.9 (Dimension). Let X ̸= ∅ be an irreducible topological space. The
dimension of X is the largest integer n such that there exists a chain of irreducible
closed subsets

∅ ≠ X0 ⊊ X1 ⊊ · · · ⊊ Xn = X.

Although looks reasonable, this is actually a pretty hard definition to deal with tangibly:

Example 5.10

If X = An, then we can consider X = An ⊃ An−1 ⊃ An−2 ⊃ · · · ⊃ A1 ⊃ A0 ⊃ ∅, so
dimAn ≥ n. But “if there was any justice in this world, the dimension should be n.”
(quote from Popa) Can we prove this using only what we have? Seems like no, which
is pretty unfortunate. It is true indeed that dimAn = n, but we’ll need some serious
commutative algebra for this.

5.3 Between Algebraic Sets and Ideals

Now we start to make an explicit correspondence between algebra and geometry. This
correspondence, naturally, is extremely powerful in algebraic geometry, and it allows us to
do so many incredible things.

So first, we have a way of taking an ideal and making an algebraic set: this is Z(·). In
particular, if S ⊆ k[X1, . . . , Xn] is an ideal, then Z(S) is the algebraic set of that ideal. We
want something that goes the other way.

Definition 5.11. Let X ⊆ An be an arbitrary subset. The ideal of X is

I(X) = {f ∈ k[x1, . . . , xn] | f(x) = 0∀x ∈ X}.

Restricting our attention to when X above is algebraic,
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There exists a one-to-one correspondence between
{algebraic sets in An} and {ideals in k[x1, . . . , xn]}.

We need to prove that this is actually a one-to-one correspondence, which we will do next
time using Hilbert’s Nullstellensatz.

Alongside this correspondence, we have two functions that take us between these two
sets: Z(·) gives an ideal from an algebraic set, and I(·) goes the other direction. One
naturally asks,

To what extent are these operations inverses to each other?

Let’s look at some examples to make an informed guess.

Example 5.12

If I = (X2) ⊆ k[X, Y ], then Z(I) is the y-axis, so I(Z(I)) = (X). If I = (Y, Y 2−X2−
X3) = (Y,X2 + X3) = (Y,X2(X + 1)) ⊆ k[X, Y ], then by a similar reasoning to the
(X2) case, we get I(Z(I)) = (Y,X(X + 1)).

So intuitively, what is happening is that we don’t care about powers. This is the motivation
for our following definition:

Definition 5.13. Let I ≤ R be an ideal (R commutative). The radical of I is the
ideal √

I = {f ∈ R | f r ∈ I for some r > 0}.

Author’s Note 5.14. I like the notation
√
I for the radical, but some people use

Rad(I) or rad(I). I will use interchangeably!

Exercise 5.15. Sanity check: I ⊆
√
I.

The reason why we care about this is because this is exactly the condition we need in order
for our correspondence between algebraic sets and ideals to hold: the vanishing ideal of an
algebraic set is a radical ideal. In other words, if X is an algebraic set, then I(X) is a radical
ideal.

5.4 Continuing the Correspondence

Can we restrict our correspondence to affine varieties? (Recall these are just irreducible
algebraic sets.) What kind of ideals do they correspond to?
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Lemma 5.16

X is an affine variety if and only if I(X) is a prime ideal.

Proof. Suppose X is reducible, i.e. X = X1 ∪ X2 for some proper closed subsets X1, X2.
Then, I(X) ⊊ I(X1), I(X2), which means ∃ f1 ∈ I(X1)\I(X) and f2 ∈ I(X2)\I(X). But if
x ∈ X, then either f1(x) = 0 or f2(x) = 0, which means (f1 · f2)(x) = 0 =⇒ f1f2 ∈ I(X),
so I(X) is not prime.

Now suppose I(X) is not prime. Then, there exists f, g /∈ I(X) such that f · g ∈ I(X).
Then, we have X ⊆ Z(f · g) = Z(f) ∪ Z(g), so we can write

X = (X ∩ Z(f)) ∪ (X ∩ Z(g)).

But as f, g /∈ I(X) =⇒ X ̸⊆ Z(f), Z(g), we have just written X as a union of two proper
closed subsets, so X is reducible.

So this is a really nice way of determining whether an algebraic set is a variety, because
we can easily check if an ideal is prime: we just consider its quotient and check if it is an
integral domain.

5.5 Hilbert’s Nullstellensatz (assuming Weak)

Now we present a theorem which will be the focus of next lecture. This is very much in the
realm of commutative algebra, thus next time will be a very algebra-heavy lecture.

Theorem 5.17 (Hilbert’s Nullstellensatz, Variant I/“Weak Nullstellensatz”)

Let k = k and R = k[X1, . . . , Xn]. The maximal ideals in this ring are precisely those
of the form m = (X1 − a1, . . . , Xn − an), ai ∈ k.

Corollary 5.18

Every ideal I ⊊ k[X1, . . . , Xn] has Z(I) ̸= ∅.

Proof. This follows because every ideal I is contained in some maximal m, which is of the
form (X1− a1, . . . , Xn− an) by Weak Nullstellensatz. Thus, {(a1, . . . , an)} = Z(m) ⊂ Z(I),
as desired.

Remark 5.19. Note that this miserably fails in non-algebraically closed fields. For
instance, X2 + 1 ⊆ R[X] generates a maximal ideal, but it has no roots.

But assuming this version of Nullstellensatz (German for “root theorem”), we can prove our
claimed correspondence between algebraic sets and radical ideals.
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Theorem 5.20 (Hilbert’s Nullstellensatz, Variant II)

If X is an algebraic set in An, then Z(I(X)) = X. If I ⊆ k[X1, . . . , Xn] is an ideal,
then I(Z(I)) =

√
I.

Proof. We start with the first statement. ⊇ is clear (sanity check!), so we will show ⊆. Let
X = Z(I); then, I ⊆ I(Z(I)) = I(X) =⇒ Z(I(X)) ⊆ Z(I), as desired.

The second statement is harder. One direction is clear: convince yourself that
√
I ⊆

I(Z(I)) follows from definition. There are many ways, some very involved/heavy on com-
mutative algebra, to prove the reverse inclusion, but we will execute “Rabinowitsch Trick,”
where we will consider one more variable and consider an ideal in the larger ring. Explicitly,
let I = (f1, . . . , fr), and take g ∈ I(Z(I)) ⊆ k[X1, . . . , Xn]. We can construct a new ideal
J = (f1, . . . , fr, Xn+1 · g − 1) ⊆ k[X1, . . . , Xn, Xn+1].

Take p ∈ Z(J ), so f1(p) = · · · = fr(p) = 0 by definition. But this means g(p) = 0
since g ∈ I(Z(f1, . . . , fr)). At the same time, p ∈ Z(J ) means (Xn+1 · g − 1)(p) = 0,
which is only possible if −1 = 0, a contradiction. Thus, Z(J ) = ∅. Now we whip out
our machete: by Weak Nullstellensatz, this is equivalent to saying J = k[X1, . . . , Xn+1], so
∃h1, . . . , hr+1 ∈ k[X1, . . . , Xn+1] such that

r∑
i=1

hi · fi + hr+1(Xn+1 · g − 1) = 1.

Although this may look complicated, we now have an identity in terms of the variables
X1, . . . , Xn+1. In particular, this identity must continue to hold if we set Xn+1 =

1
g(X1,...,Xn)

.
This gives us

r∑
i=1

hi

(
X1, . . . , Xn,

1

g(X1, . . . , Xn)

)
· fi(X1, . . . , Xn) = 1.

We can multiply by a sufficiently large power of g (say gN) to clear denominators in the left
hand side, from which we get, for some h′i ∈ k[X1, . . . , Xn],

∑r
i=1 h

′
i · fi = gN =⇒ gN ∈ I,

as desired.

This validates our correspondence, which we now lay out in full.

1. We have a bijection {algebraic sets in affine An} ↔ {radical ideals in k[x1, . . . , xn]},
where the arrows are given by

I(·)−−→ and
Z(·)←−−.

2. This restricts to a 1-1 correspondence between {affine varieties in An} and
{prime ideals in k[x1, . . . , xn]}.

3. This further restricts to a 1-1 correspondence between {points in An} and
{maximal ideals in k[x1, . . . , xn]}.

We now explicitly define something we’ve encountered many times in the homework.
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Definition 5.21 (Coordinate Ring). Let X ⊆ An be an affine variety. Then,

A(X) := k[X1, . . . , Xn]/I(X)

is the affine coordinate algebra of X.

Remark 5.22. We can consider the coordinate algebra of an algebraic set in general,
but note that the ring will no longer be integral since I(X) need not be prime.

Elaborating more on the above, if A(X) is not an integral domain, then (0) is no longer a
prime ideal. To see what instead the minimal primes are, we can consider the decomposition
X = X1∪· · ·∪Xr into irreducible components. Since each Xi is irreducible, we have I(Xi) =
pi for some prime ideal pi ⊂ k[x1, . . . , xn]. Then, we have a primary decomposition
I(X) = p1 ∩ · · · ∩ pr.

1 The pi’s are the minimal primes in k[x1, . . . , xn] that contain I(X),
hence are the minimal primes in A(X).

5.6 Affine Theory of Dimension

Dimension Theory is extremely expansive in commutative algebra and algebraic geometry,
enough so that we could talk about this for a whole semester, so we have to choose our
battles here. To prove Nullstellensatz in full, we will forego proving lots of results here and
instead provide the information necessary to apply these results in our class.

If you’ve studied some commutative algebra before, though, this will be familiar notions
to you!

Definition 5.23 (Krull Dimension). Let R be a ring. The (Krull) dimension of R
is

dimR := sup
p prime

{ht p},

where ht p is the sup of the length k over any chain of prime ideals p0 ⊊ p1 ⊊ · · · ⊊
pk = p.

Remark 5.24. Unfortunately, even for Noetherian rings, we can have dimR =∞, but
these edge cases are largely pathological, so we’re chillin’.

Exercise 5.25. dimX = dimA(X). (See how the definitions correspond to each other!)

Now we state our main theorem of Dimension Theory.

1This is a term from commutative algebra. Look it up to learn more, but here, think of it as factorization
into prime ideals.
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Theorem 5.26 (Main Theorem of Dimension Theory)

Let k be a field and B be an integral, finitely generated k-algebra. Then,

1. dimB = trdegkQ(B), where Q(B) is the field of fractions of B.

2. For all prime ideals p ⊆ B, ht p+ dimB/p = dimB.

Although we won’t provide a proof, we discuss a little bit of its application to see what’s
going on.

Example 5.27

If B = k[x1, . . . , xn], then Q(B) = k(x1, . . . , xn), which is perhaps the simplest example
of a purely transcendental extension. This means dimB = trdegk k(x1, . . . , xn) = n,
yay!

More generally, if we consider A(X) = k[x1, . . . , xn]/I(X), then we can think of
A(X) = k[x1, . . . , xn], with these xi’s having algebraic relations dictated by I(X). In
particular, up to some xr, the elements x1, . . . , xr will be algebraically independent, so
we can think of the tower of extensions

k ⊆ k(x1, . . . , xr) ⊆ k(x1, . . . , xr)(xr+1, . . . , xn) = k(x1, . . . , xn),

where the first extension is purely transcendental and the second is algebraic. This gives
dimA(X) = r.

6 02/13 - Commutative Algebra

Commutative algebra time.

Theorem 6.1 (Krull’s Principal Ideal Theorem)

Let R be a Noetherian ring, f ∈ R such that f is neither a zero divisor nor a unit.
Then, there exists a minimal prime p over (f) such that ht p = 1.

This allows us to make the following precise: if we’re considering the coordinate ring of a
curve C carved out by a single f(x1, . . . , xn), then we expect the dimension of the curve
to be n − 1. This is true from the “Main Theorem of Dimension Theory” (5.26), as we
have ht p + dimA[C]/p = dimA[C]. We make this both more general and more precise by
interpretating this algebraic statement geometrically:
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Theorem 6.2 (Geometric Version of Theorem 6.1)

If X ⊆ An is an algebraic set and f ∈ k[x1, . . . , xn] such that Z(f) does not contain
any component of X but intersects with X, then there exists a component of X ∩Z(f)
with dimension equal to dimX − 1.

The following corollary is what I was trying to talk about with the dimension of a curve
being n− 1.

Corollary 6.3

Let X ⊆ An be an affine variety. Then, dimX = n − 1 ⇐⇒ X = Z(f) for some
irreducible polynomial f ∈ k[x1, . . . , xn].

Proof. This is equivalent to saying a prime ideal p ⊆ k[x1, . . . , xn] has ht p = 1 iff p = (f)
for some irreducible f . We first prove the forward direction: take some 0 ̸= f ∈ p. Since
k[x1, . . . , xn] is a UFD, we can factor f into irreducibles. But f ∈ p means that at least
one irreducible factor belongs to p, so we may assume f itself is irreducible. This means
0 ⊆ (f) ⊆ p, and ht p = 1 immediately gives (f) = p. The reverse direction immediately
follows from Krull’s Principal Ideal Theorem.

Remark 6.4. This nice correspondence completely breaks down if we’re considering
varieties that decrease the dimension by more than 1. The only situation where this
analogy carries over is in complete intersection rings.

6.1 Finiteness and Integrality Conditions

May be slightly boring, but very necessary (otherwise we wouldn’t be spending so much
time on it!).

Definition 6.5 (Types of finitely generated). Let R ⊆ S be two rings. Then,

1. S is finitely generated over R (module-finite over R) if ∃ s1 . . . , sn ∈ S which
generates S as an R-module, i.e. ∀ s ∈ S, ∃ ri ∈ R such that s = r1s1+ · · ·+rnsn.

2. S is finitely generated as an R-algebra (ring-finite over R) if ∃ s1, . . . , sn ∈ S
such that S = R[s1, . . . , sn].

If S is ring-finite over R, then there exists a surjection

R[X1, . . . , Xn] ↠ R[s1, . . . , sn] = S

R 7→ R

Xi 7→ si.
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The kernel of this map dictates the relations between these generators si. Thus, an alter-
nate way of talking about ring-finiteness is to say that there exists a surjection from the
polynomial ring to S.

Exercise 6.6. (Sanity check) Module-finite implies ring-finite.

These finiteness conditions behave well under composition:

Proposition 6.7

Module-finiteness and ring-finiteness are preserved under compositions of inclusions,
i.e. if S is module/ring finite over R and T is module/ring finite over S, then T is
module/ring finite over R.

Proof. On the homework, mwahahaha.

Definition 6.8 (Integral). If R ⊆ S and s ∈ S, we say s is integral over R if there
exists a monic polynomial f ∈ R[x] such that f(s) = 0. We say S is integral over R
if every element of S is an integral element.

Example 6.9

Q[
√
2] is integral over Q, as

√
2 satisfies x2−2 = 0. An extension like Q[

√
2, 3
√
2, 4
√
2, . . . ]

is also an integral extension over Q, but it is not ring-finite. On the other hand, Q[π]
is not integral over Q.

6.2 Relating the Two

How can we relate these two notions (finiteness and integrality) together? How can we
characterize integral elements?

Proposition 6.10

Let R ⊆ S, S an integral domain, s ∈ S. Then the following are equivalent:

1. s is integral over R,

2. R[s] is module-finite over R

3. ∃R[s] ⊆ R′ ⊆ S subring that is module-finite over R.

Proof. (1) =⇒ (2): We know there exists some f = xn + rn−1x
n−1 + · · · + r0 ∈ R[x]

such that f(s) = 0. Thus, we can write sn = −rn−1s
n−1 − · · · − r1s − r0, which means sn
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(and thus all higher powers of s) are contained in the module-finite extension generated by
1, s, . . . , sn−1. The conclusion follows.

(2) =⇒ (3): Obvious, take R′ = R[s].

(3) =⇒ (1): Suppose R′ is generated over R by v1, . . . , vn ∈ R′. Then, we can express
s · vi =

∑n
j=1 aij · vj. Expressing this in terms of matrices, let A = (aij) and v the column

vector consisting of v1, . . . , vn. Then, we have A · v = (s · In) · v =⇒ (A − sIn) · v = 0.
Since v ̸= 0, this means det(A− sIn). The conclusion follows from the observation that the
determinant is a monic polynomial in s with coefficients in R, which implies s is integral
over R, as desired.

This result is really nice, as we observe from the following consequences. The first nice
consequence of the above proposition is that the set of integral elements has a subring
structure:

Corollary 6.11

The set of elements in S that are integral over R is a subring R ⊆ S containing R. We
call R the integral closure of R in S.

You may have observed this phenomenon when R ⊆ S is a field extension from some field
theory class. This is a generalization.

Proof. Let a, b ∈ S be integral over R. By the above proposition (Prop 6.10), R[a] is module-
finite over R. Since b is integral over R, it is clearly integral over R[a]. Using Proposition
6.10 again, we see that R[a, b] is module-finite over R[a]. Since finiteness is preserved under
compositions (Proposition 6.7), we have R[a, b] is module-finite over R.

This gives us what we need. We want to show that a + b and a · b are both integral
over R. But both of these lie in R[a, b], so take some arbitrary s ∈ R[a, b]. Then, we have
R[s] ⊆ R[a, b] ⊆ S, and the (3) =⇒ (1) implication of Proposition 6.10 tells us that s is
integral over R.

Corollary 6.12

Suppose S is ring-finite over R. Then, S is module-finite over R iff S is integral over R.

Proof. We first prove the forward direction. Suppose s ∈ S, so R[s] ⊆ S. Using the last
implication of Proposition 6.10, this immediately gives us s is integral.

For the reverse direction, suppose S = R[s1, . . . , sn] where each si is integral over R. We
proceed by induction on n. For n = 1, it is clear that R ⊆ R[s1] is module-finite by the first
implication of Proposition 6.10. Now suppose R[s1, . . . , sk] is module-finite over R. Then,
sk+1 is integral over R means it is integral over R[s1, . . . , sk], which means R[s1, . . . , sk+1] is
module-finite over R[s1, . . . , sk] by the first implication of the proposition again. Using our
inductive hypothesis and Proposition 6.7 (finiteness preserved under composition), we have
R[s1, . . . , sk+1] is module-finite over R, as desired.
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6.3 Applying to Fields

We’ll port over everything now to the specific case where R, S from above are actually fields.
We have slightly different terminology for the fields case, but bear with me. Let K ⊆ L
be a field extension and s1, . . . , sn ∈ L. Observe that K(s1, . . . , sn), the field of fractions of
K[s1, . . . , sn], is the subfield of L generated by K, s1, . . . , sn.

Definition 6.13. 1. L is a finitely generated field extension of K if L =
K(s1, . . . , sn) for some s1, . . . , sn ∈ L.

2. L is an algebraic extension over K if all elements in L are algebraic over K.
The set of all algebraic elements over K forms a subfield K ⊆ K ⊆ L, called the
algebraic closure of K in L.

6.4 Proving Weak Nullstellensatz

To remind you of why we’re doing all of this in the first place, we proved Hilbert’s Nullstel-
lensatz (Theorem 5.20) assuming the Weak Nullstellensatz (Theorem 5.17), but we never
got around to proving the Weak version. We now state a very powerful statement, which
we’ll prove next time, that allows us to provide a proof.

Theorem 6.14

Let K ⊆ L be a field extension. If L is ring-finite over K, then L is module-finite (i.e.
algebraic) over K.

Proof. (of Weak Nullstellensatz) Let k = k, R = k[X1, . . . , Xn], and m ⊂ R a maximal ideal.
Then, we have a map k ↪→ R/m = L, where R/m = k[X1, . . . , Xn] is ring-finite over k. By
the above theorem (6.14), L is algebraic over k. But k is algebraically closed, so this forces
k = L, which meansXi = ai ∈ R/m for some ai ∈ k. This implies (X1−a1, . . . , Xn−an) ⊆ m,
but the former is already a maximal ideal, so equality follows.

7 02/15 - Wrapping up Commutative Algebra (for now)

7.1 Completing Nullstellensatz Proof

Recall Theorem 6.14 above. This is a crucial result about fields: there is no distinguishing
between ring-finite and module-finite for fields! Using it, we proved Weak Nullstellensatz,
which gets us closer to completing our proof of Hilbert’s Nullstellensatz (recall we first
assumed Weak to prove Hilbert, then we proved Weak assuming the above theorem at the
end of last class).
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Proposition 7.1

Suppose k a field and X an indeterminate variable.

1. k(X) is a finitely generated field extension that is not ring finite over k.

2. k[X] = k[X] inside k(X).

Proof. The first statement is left as an exercise. (Hint: clear denominators.) For the
second, suppose s = P/Q ∈ k(X) is integral over k[X], where P,Q ∈ k[X] are relatively
prime. s being integral means ∃ fi ∈ k[X] such that sn+fn−1s

n−1+· · ·+f0 = 0. Substituting
s = P/Q and clearing denominators, we have

P n + fn−1P
n−1Q+ · · ·+ f0Q

n = 0.

From here, we can deduce Q | P n, but since we assumed P,Q are coprime, this is only
possible if Q is constant, so s ∈ k[X].

Now we will prove Theorem 6.14.

Proof. Since L is ring-finite over K, we may write L = K[s1, . . . , sn] for si ∈ L. We proceed
by induction on n. If n = 1, then we have a map φ : K[x] ↠ K[s1] = L where K maps
identically and x 7→ s1. By First Isomorphism Theorem, we have L = K[x]/I. But if L is
a field, this means I is maximal, so I = (f) for some monic irreducible polynomial f . But
this means that φ(f(x)) = f(s1) = 0 in L, so s1 is indeed algebraic over K.

Now assume the statement is true for n − 1 elements. Applying this to the base field
K(s1), we have that K(s1)[s2, . . . , sn] is an algebraic extension of K(s1) by the inductive
hypothesis. If s1 is also algebraic over K, then we are done. Otherwise, s1 is transcendental,
so K(s1) ∼= K(x).

Since each of the si are algebraic (2 ≤ i ≤ n), we have fij ∈ K(s1) such that for all
2 ≤ i ≤ n,

sni
i + fi,ni−1 · sni−1

i + · · ·+ fi,0 = 0.

We know that there exists some f ∈ K[s1] such that multiplying by f will clear all denom-
inators in each fij (for an explicit construction, just let fij = gij/hij and let f =

∏
i,j hij).

For each i, we will multiply by fni to get

(fsi)
ni + f · fi,ni−1(fsi)

ni−1 + · · ·+ fnifi,0 = 0,

where all coefficients of (fsi) are now in K[s1]. Thus, f · si are all integral over K[s1].

Let L = K[s1, . . . , sn]. If t ∈ L, then there must exist some N > 0 such that fN · t ∈
K[s1][fs2, . . . , fsn], meaning fN · t is integral over K[s1]. Now take any g ∈ K[s1] relatively
prime to f , and consider t = g−1 ∈ K(s1). From what we just said, we have fN/g is integral
over K[s1] for some large enough N > 0. By Proposition 7.1, K[s1] is integrally closed in
K(s1), so f

N/g ∈ K[s1], a contradiction since we assumed f, g are relatively prime.

Although the proof may look a bit lengthy and involved, most of the things we did were
just algebraic tricks where we just clear denominators and work with polynomials. The crux
of the proof is our application of Proposition 7.1 at the end. Clutch stuff.
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7.2 Regular Functions

Whenever we study a new mathematical object, it is just as, if not more, important to study
the maps between these objects.

Suppose X ⊆ An is an affine variety. We already defined the affine coordinate ring
A(X) = k[X1, . . . , Xn]/I(X) = {polynomials f : X → k}. We think of these as “regular
functions on X,” although we have yet to define what regular means. Let’s do this now:

Definition 7.2. Let X ⊆ An affine variety and x ∈ X. Define the local ring of x in
X

OX,x =

{
φ =

f

g
| f, g ∈ A(X), g(x) ̸= 0

}
.

We can think of Ox,x as the subring of K(X) the function field of X, which we can also
think of Frac(A(X)) the field of fractions of A(X), where the elements are defined (regular)
at x. (This is the g(x) ̸= 0 condition.)

Remark 7.3. The name “local ring” may ring (no pun intended) a bell from commu-
tative algebra, if you’ve done that stuff before. We’ll see shortly that it is indeed a local
ring. (For the ambitious: can you guess what the unique maximal ideal is?)

Note that OX,x is carrying extremely local – in fact, point-specific – information: it contains
all rational functions that are regular at a specific point x. We can also generalize this to
local neighborhoods: if U ⊆ X is open, then we can define

OX(U) :=
⋂
x∈U

OX,x ⊆ K(X).

This is the ring of rational functions that are regular on all of U , i.e. for every x ∈ U , every
φ ∈ OX(U) is defined (regular) at x.

Remark 7.4. If the notation OX,x and OX(U) seems a bit weird/seems to come out
of nowhere, don’t worry. Because we’re only staying in the classical realm of algebraic
geometry, we’re sweeping a lot of subtleties/bigger picture stuff under the rug. If you
want to look more into it, then what we’re really talking about here is sheaves, which
associates to every open subset U the regular functions defined on U . We call OX,x the
stalk of the sheaf at x, and this is the ring of germs of functions at x. (Lots of new
words, but the stalk just carries very local information.)

Example 7.5 (Regular functions expressed differently)

Important: just because some φ ∈ OX(U) is regular at every point in U doesn’t mean
that it is “expressed the same” at every point. Here’s what I mean: consider the open
subset

U = {(x, y, z, t) ∈ X | y ̸= 0 or t ̸= 0} ⊆ X = (xt− yz = 0) ⊆ A4.
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Consider the rational function φ = x
y
. This is regular on all of U except for when y = 0,

but luckily in our field of fractions, x
y
= z

t
, and z

t
is regular for y = 0, so φ is regular on

all of U even though we don’t have a consistent choice of writing φ at every point.

7.3 Local Ring Aside

Actually, Popa is talking about the terminology “local ring” so I’ll insert this aside here:

Definition 7.6 (Local Ring). R is a local ring if one, and hence both, of the following
is true:

1. There exists only one maximal ideal m ≤ R.

2. There exists a maximal ideal m ≤ R such that all x ∈ R \m is invertible.

Exercise 7.7. (Algebra exercise!) Show that these two conditions are equivalent.

Example 7.8

k[X1, . . . , Xn] is not a local ring, since any ideal of the form (X1 − a1, . . . , Xn − an) are
maximal. On the other hand, k[[X1, . . . , Xn]] is a local ring! Can you find the unique
maximal ideal? (Answer: (X1, . . . , Xn).)

Now why is OX,x a local ring? Consider the evaluation map

evx : OX,x ↠ k

φ 7→ φ(x) = f(x)/g(x).

This is clearly surjective, and it is well-defined. Consider the ideal mx = ker(evx) = {φ =
f/g | f(x) = 0, g(x) ̸= 0}. By First Isomorphism Theorem, OX,x/mx

∼= k, which is a field,
so mx is maximal! Furthermore, one can use the second condition of local rings to show
that anything outside of mx is invertible, so it is the unique maximal ideal.

We could continue for a really long time with this aside, but hopefully this gives you a
taste of just how geometric algebra is. Local rings are called that because they have this
explicit geometric interpretation of rings that carry, well, local data.

Even better, although these local rings carry just local data a priori, it turns out that
lots of global information (e.g. information about all of X) can be recovered just from
OX,x. And this is nice because OX,x is a really well-behaved ring: not only is it local, but
also...

Exercise 7.9. OX,x is a Noetherian ring.

This is left as an Exercise to the Reader (hehe), but if you know what localization is, consider
the localization of A(X) by the ideal of regular functions vanishing at x. The exercise follows
from the fact that any localization of a Noetherian ring is still Noetherian (verify this!).
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7.4 Poles

Points where a rational function is not defined are important to study in many areas of
math (complex analysis, algebraic geometry, etc), so we give them a name.

Definition 7.10 (Poles). x ∈ X is a pole of φ ∈ K(X) if φ is not regular at x.

Example 7.11 (Pole)

Consider X = (xy − z2 = 0) ⊆ A3 and the rational function φ = x
z
= z

y
. Then, (0, 0, 0)

is a pole for φ.

Lemma 7.12

The set of poles of a rational function on X is a closed subset of X.

Proof. Let X ⊂ An affine and φ ∈ K(X). Consider the ideal of A(X)

Iφ = {h ∈ A(X) | h · φ ∈ A(X)}.
I claim that the poles of φ are exactly Z(Iφ). This follows because x is not a pole iff (by
definition) there exists an expression φ = f/g such that g(x) ̸= 0. This means g ∈ Iφ, and
so g(x) ̸= 0 ⇐⇒ x /∈ Z(Iφ).

I’m not sure exactly how the following remark came up (maybe it was in response to a
question), but it is an important one so I want to make it explicit.

Exercise 7.13. There exists a one-to-one correspondence between ideals in R/I and
ideals in R containing I.

This is a purely algebraic fact, and it is not difficult to show, but it is an extremely important
correspondence. On the note of it being “easy to see”:

Popa: We have this correspondence... I don’t know what it’s
called.

Eliot: I’ve always heard of it as the Correspondence Theorem.

Popa: Well, it’s more of a Correspondence Observation.

Lemma 7.14

OX(X) :=
⋂

x∈X OX,x = A(X).

Proof. Reverse inclusion is clear. For ⊆, suppose φ ∈
⋂
OX,x, i.e. φ is no poles. By the

proof of the above lemma, this means Z(Iφ) = ∅, and from Weak Nullstellensatz we have
Iφ = A(X). Thus, 1 ∈ Iφ, so φ ∈ A(X).
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8 02/22 - Morphisms

Missed the beginning of class, but we talked more about OX,x being a Noetherian local ring,
including definitions of local and such. Included a bit of the discussion in the above section.

Author’s Note 8.1. Happy birthday Eliot!!

8.1 Regular Maps

These are the morphisms between algebraic sets. Last time, we said the set of regular
maps at a point x forms a ring, which we called the local ring at x. Let’s more formally
define a regular map:

Definition 8.2 (Regular Map). Let X ⊆ An and Y ⊆ Am be affine algebraic sets. A
function f : X → Y is a regular map (morphism) if ∃P1, . . . , Pm ∈ k[X1, . . . , Xn]
such that f(x) = (P1(x), . . . , Pm(x)) for all x ∈ X. This is summarized by the following
commutative diagram:

X Y

An Am

f

(P1,...,Pm)

Example 8.3

Consider the x-axis X = A1 and the parabola Y = Z(y− x2). We have a really natural
map from X to Y where we “project up,” i.e. any point x maps to (x, x2). So we have
a map f : A1 → A2 where t 7→ (t, t2), and this induces a map onto Y . Note that we
could also go the other direction: take the projection map π : A2 → A1 onto the x-axis,
and this induces a morphism from Y → X.

Definition 8.4 (Isomorphism). A regular map such that it has an inverse which is also
a regular map is called an isomorphism.

Example 8.5 (Isomorphism)

Or rather, non-isomorphism. Let X = A1 and Y = Z(y2− x3). Note that A1 is smooth
but Y has a cusp, so geometrically we can guess that they aren’t isomorphic, at least
not at the cusp (x, y) = (0, 0). Indeed, this is exactly the case: if we take the function
f : A1 → A2 where t 7→ (t2, t3), then the image is Y , so f : X → Y is a bijective
morphism. However, it is does not have an inverse, because its inverse g : Y → X
mapping (x, y) 7→ y/x is not defined at 0. We will see this situation appear again and
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again, so be wary of it.

Let f : X → Y be a morphism. We can then define the pullback map on the coordinate
rings. f induces a map

f ∗ : A(Y )→ A(X)

g 7→ g ◦ f.

Exercise 8.6. Check that this is “well-behaved,” i.e. it is a k-algebra homomorphism.
Further check that it respects composition, i.e. (f ◦ h)∗ = h∗ ◦ f ∗.

Remark 8.7. Here, it is useful to adopt the perspective that A(X) = OX(X), the ring
of regular maps on all of X. You can try to verify this on your own to believe the
equality.

Example 8.8

Several examples, because this is an important notion to grasp:

1. Let p : An → Am be the projection map onto the first m coordinates (assume
n ≥ m). Then, the pullback map is the inclusion k[X1, . . . , Xm]→ k[X1, . . . , Xn]
where Xi 7→ Xi.

2. Consider again the map f : X → Y , where X = A1 and Y = Z(y − x2), given by
t 7→ (t, t2). The induced pullback is f ∗ : k[X, Y ]/(Y −X2)→ k[T ] where X 7→ T .
This, you can check, is an isomorphism.

3. Consider now the map t 7→ (t2, t3) (this is from the non-isomorphism example
above, Example 8.5). The corresponding pullback is

f ∗ : k[X, Y ]/(Y 2 −X3)→ k[T ]

X 7→ T 2

Y 7→ T 3.

This is not an isomorphism (just like how f itself was not an isomorphism), since
T is not in the image of this map!

8.2 Correspondence Between Algebraic Sets and Algebras

We already knew that algebraic sets are in one-to-one correspondence between radical ideals,
and by taking the quotient of the ideals in the polynomial ring, we’ve seen in class/psets
that we have a correspondence between the algebraic sets (over k) and finitely-generated
k-algebras. This correspondence goes deeper, though, now that we have a correspondence
between morphisms of algebraic sets with morphisms of k-algebras.
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Proposition 8.9

Let X ⊆ An, Y ⊆ Am be algebraic sets. Then, there exists a one-to-one correspondence
between morphisms f : X → Y and k-algebra homomorphisms A(Y )→ A(X) given by
f 7→ f ∗.

In other words, we have an equivalence between the category of algebraic sets over k and the
category of finitely generated k-algebras. (For category-theory lovers: the map (functor)
between the categories taking X to OX(X) = A(X) is called the “global section” functor,
since we’re taking global sections, and it is a contravariant functor.) And in general, it is
a lot easier to work with algebras than with some algebraic set, which doesn’t have much
structure to work with.

Proof. We want to construct an inverse of f 7→ f ∗. Let φ : A(Y ) → A(X) be a k-algebra
homomorphism. We have A(Y ) = k[Y1, . . . , Ym]/I(Y ) and A(X) = k[X1, . . . , Xn]/I(X);
denote yi = Yi. Define maps on each of the coordinates, so construct fi : X → A1 where
fi = φ(yi). This gives a map f : X → Am where f = (f1, . . . , fm).

We need to check that this f in fact maps into Y . Indeed, if x ∈ X and g ∈ I(Y ), then
g(f(x)) = g(φ(y1)(x), . . . , φ(ym)(x)) = φ(g)(x) since φ is a homomorphism. But g ∈ I(Y ),
so this is simply 0, meaning f(x) ∈ Z(I(Y )) = Y .

It remains to verify that this is indeed the desired inverse, i.e. φ = f ∗. Suppose
h ∈ A(Y ). Then, f ∗(h) = h ◦ f = φ(h) (again since φ is a homomorphism), which means
φ = f ∗ as desired.

Corollary 8.10

f : X → Y is an isomorphism iff f ∗ : A(Y )→ A(X) is an isomorphism.

Remark 8.11. Note that this correspondence absolutely fails in the projective scene.
Whereas in the affine case, taking the coordinate rings recovers all information about
the algebraic set, in the projective case, doing so loses all information, since the only
regular maps in projective space are just the constant functions. (Convince yourself
that this is true!)

8.3 Redefining Morphisms

We return to our focus on our morphisms.

Lemma 8.12

If f : X → Y is a morphism, then f is continuous in the Zariski topology, i.e. if Z ⊆ Y
is an algebraic set, then f−1(Z) ⊆ X is an algebraic set.
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Proof. Suppose Z = Z(g1, . . . , gr) for gi ∈ A(Y ). Then, using the fact gi ◦ f = f ∗ ◦ gi, we
have

f−1(Z) =
r⋂

i=1

f−1(Z(gi)) =
r⋂

i=1

Z(f ∗(gi)) = Z(f ∗g1, . . . , Z(f
∗gr),

which is algebraic, so we conclude.

We’ve seen, for affine sets X, Y , a continuous map f : X → Y is a morphism, i.e.
∀ g ∈ A(Y ) = OY (Y ), we have f ∗(g) ∈ A(X) = OX,x.

Proposition 8.13

Let f : X → Y be a continuous map. Then, the following are equivalent:

1. f is a morphism,

2. ∀U ⊆ Y open, f ∗(OY (U)) ⊆ OX(f
−1(U)),

3. ∀x ∈ X and φ ∈ OY,f(x), f
∗(φ) ∈ OX,x.

This is a remarkable statement, perhaps a bit too remarkable for the purposes of this
class. In scheme theory, morphisms are defined by either condition (2) or (3). (These are
actually morphisms of ringed spaces, but you don’t need to be boggled down by more
terminology for now.) This proposition is just saying that this more high-powered definition
of morphisms in fact coincides with our definition of morphisms. The useful thing about
the scheme-theory definition is that it does not rely on global data. We strictly work in the
local setting, and somehow we obtain information about its global behavior.

Proof. (2) implies (1) is clear: just take U = Y . (3) implies (2) is also clear from the
observation OX(U) =

⋂
x∈U OX,x. (1) implies (3) is also not too bad! If φ ∈ OY,f(x) ⊆

k(Y ) = Q(A(Y )), then we can express φ = g/h where g, h ∈ A(Y ) such that h(f(x)) =
f ∗(h)(x) ̸= 0. But then this means f ∗φ = f ∗g/f ∗h ∈ OX,x.

Another reason why the above proposition is useful is because we can adopt this definition
of morphism for any kind of variety, e.g. open subsets of affine varieties (quasi-affine),
projective varieties, open subsets of projective varieties (quasi-projective).

Definition 8.14 (Morphisms for quasi-affine). A continuous map f : X → Y between
open subsets of affine varieties is a morphism if either (2), (3) of Proposition 8.13 holds.

8.4 Properties of Morphisms
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Lemma 8.15

Let f : X → Y be a morphism of affine varieties. then,

1. If Z ⊂ f(X) and f−1(Z) is irreducible, then Z is irreducible.

2. f(X) is irreducible.

Remark 8.16. Note that the closure is necessary, since the image of a closed subset is
not necessarily closed. For instance, the projection of the hyperbola Z(xy− 1) into the
x-axis is A1 − {0}, which is open.

Remark 8.17. We will discuss this result more when we get to Chevalley’s Theorem,
which is a really important result in algebraic geometry. So keep this in mind!

Proof. We breeze through a proof of (1); the proof for (2) is of similar flavor. Suppose
Z = Z1 ∪ Z2. Then, f−1(Z) = f−1(Z1) ∪ f−1(Z2), so WLOG f−1(Z) = f−1(Z1). This
means Z = Z1, done.

Proposition 8.18

Let f be a morphism of affine varieties. If f : X → Y is surjective, then f ∗ : A(Y ) →
A(X) is injective.

Proof. Just follows by definition. If g ∈ A(Y ) and f ∗(g) = g ◦ f = 0, we must have g = 0
since f is surjective.

However, the converse of this is false. Consider the pullback map f ∗ : k[T ]→ k[X, Y ]/(XY−
1) mapping T 7→ X. This is injective, but the projection of the hyperbola onto the x-axis
is not surjective. (0 is missing.) We have a special name for when f ∗ is injective:

Definition 8.19 (Dominant). f : X → Y is dominant if f(X) = Y .

Exercise 8.20. (Homework) f is dominant iff f ∗ is injective.

9 02/27 - Projective Varieties

We talked about last time (e.g. Corollary 8.10, Proposition 8.18) how we could nicely
recover information about the morphism of varieties given the ring homomorphism between
coordinate rings, and vice versa. We’ll continue with this:
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Proposition 9.1

Let f : X → Y be a morphism of affine varieties. Then, f ∗ : A(Y )→ A(X) is surjective
iff f is an isomorphism onto its image.

Proof. Suppose f is an isomorphism onto its image; let Z = Im f ⊂ Y . This is given by the
commutative diagram on the left, which induces the one on the right:

X Y A(X) A(Y )

Z = Im f A(Z)

∼

f f∗

∼

We have Z ⊆ Y =⇒ I(Y ) ⊆ I(Z), hence A(Y ) ↠ A(Z) and thus f ∗ is surjective.

For the forward direction, denote Z = Im f , so we can think of f : X → Z ↪→ Y . The
map X → Z is dominant, so by a homework problem (Exercise 8.20), A(Z) → A(X) is
injective, soA(Z)→ A(X) is an isomorphism. By Corollary 8.10,X → Z is an isomorphism,
and we conclude.

9.1 Revisiting Projective Space

Algebraic geometry is all about the projective, so it’s about time we talk about projective
varieties.

Definition 9.2 (Projective Space). The projective space Pn over field k is the set of
lines throguh the origin in An+1

k . Equivalently, it is the quotient (An+1 \ {0})/k× via
the action λ · (x0, . . . , xn) = (λx0, . . . , λxn).

We notate the point in Pn, which again represent equivalence classes of An+1 modulo scaling,
by (x0 : · · · : xn), and these are called the homogeneous coordinates on Pn. Note that
in homogeneous coordinates, the “value” xi is not well-defined, but the quotient xi/xj is
well-defined, since it is invariant under taking scalars. This is an important notion we take
advantage of in more advanced algebraic geometry.

Remark 9.3. Over C, Pn is compact in the classical topology! In fact, we have a
surjective map S2n+1 ↠ Pn. (S2n+1 = {(a0, . . . , an) ∈ Cn+1 | |a0|2 + · · · + |an|2 = 1}.
This is in fact a finite map, where the fibers are the two antipodal points.

When we were first talking about projective space (from Lecture 3), we stated the impor-
tance of homogeneous polynomials. We’ll redefine:

Definition 9.4 (Homogeneous Polynomials). A polynomial f ∈ k[x0, . . . , xn] is homo-
geneous of degree d if f(λx0, . . . , λxn) = λdf(x0, . . . , xn) for all λ ∈ k. Equivalently,
f is a sum of monomials of degree d in the xi’s.
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Definition 9.5 (Homogeneous Ideal). An ideal I ⊆ k[x0, . . . , xn] is homogeneous if
it can be generated by homogeneous polynomials (not necessarily of the same degree).

As a quick example, the ideal (x, x + y2) is not generated by homogeneous polynomials
a priori, but we see that it is the same ideal as (x, y2), so it is homogeneous. Similarly,
(x2, x3 + y2) is a homogeneous ideal.

Equivalently, we can say an ideal I is homogeneous iff ∀ f ∈ I, if we write f =
∑

d fd
(fd is the degree-d part of f), then fd ∈ I for all d.

9.2 Projective Varieties

We’d like to have ways to relate the affine picture with the projective setting. Let’s work
towards this:

Definition 9.6 (Porting over from affine stuff). Note all ideals must be homogeneous.

1. Let I ⊆ k[x0, . . . , xn] be a homogeneous ideal. Then, we can define the zero-set
of I:

Z(I) = {(x0 : · · · : xn) ∈ Pn | f(x0, . . . , xn) = 0 ∀ f ∈ I}.

These are the algebraic sets of Pn.

2. If X ⊂ Pn is any subset, we call

I(X) = ⟨f ∈ k[x0, . . . , xn] homogeneous | f(x) = 0⟩

as the ideal of X.

3. The homogeneous coordinate ring of X ⊆ Pn is

S(X) := k[x0, . . . , xn]/I(X).

This is a graded ring (here it is graded over N = Z≥0). To not clutter up this
definition, I define graded ring below. Letting Rd be the degree-d part of R, we
have S(X) =

⊕
d S(X)d.

Definition 9.7 (Graded ring). A (Z≥0-)graded ring is a ring R such that the un-
derlying additive group is a direct sum of abelian groups Ri such that ∀ i, j ∈ Z≥0,
Ri ·Rj ⊂ Ri+j.

The most canonical example, and the one we’ll probably only use in this course, is the ring
of polynomials forms a graded ring, where the grading is just the degree of the homogeneous
polynomials. (Check that if S = R[x0, . . . , xn], then S =

⊕
d≥0 Sd.)

The following will look very familiar (see Lemma 5.2):
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Proposition 9.8

We have the following:

1. If I1 ⊆ I2 ⊆ k[x0, . . . , xn] are homogeneous ideals, then Z(I2) ⊆ Z(I1).

2. If {Ii}i∈I is a family of homogeneous polynomials, then

⋂
i∈I

Z(Ii) = Z

(⋃
i∈I

Ii

)
.

3. If I1, I2 are homogeneous ideals, then Z(I1) ∪ Z(I2) = Z(I1 · I2).

Consequently, just like in the affine case, we can define the Zariski topology on Pn where
the closed sets are given by the projective algebraic sets in Pn. Furthermore, for anyX ⊆ Pn,
the Zariski topology on X is the induced topology from Pn. And now for the golden word...

Definition 9.9 (Projective Variety). A projective variety is an irreducible closed
subset of Pn.

The notion of dimension is the same as for An.

Exercise 9.10. (Homework) dimS(X) = dimX + 1.

Example 9.11 (Projective Varieties)

Although we’ll provide relatively simple examples, projective varieties are terrifying ob-
jects in the sense that we really don’t understand them. For example, it took really
difficult work from Griffiths and Harris to find a variety carved out by degree-3 polyno-
mials in P4 which is not rational, and it is still unknown if such varieties in P5 is rational
in general. But anyways,

1. If F ∈ k[x0, . . . , xn] is homogeneous of degree d, then Z(F ) ⊂ Pn is a hypersur-
face of degree d.

2. The image of P1 ↪→ Pn given by (x0 : x1) 7→ (xn0 : xn−1
0 x1 : · · · : xn1 ) is called

the rational normal curve of degree n in Pn. A really famous example is the
twisted cubic, given by the map P1 ↪→ P3 defined above. It is the intersection
of three quadrics: Y0Y3 = Y1Y2, Y

2
1 = Y0Y2, and Y

2
2 = Y1Y3. These quadrics are

the determinants of the 2× 2 minors of(
Y0 Y1 Y2
Y1 Y2 Y3

)
.

Try to generalize this for the degree n rational normal curve! And just to highlight
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the importance of this example, here’s spewing nonsense: this is an example of a
determinantal variety and the smallest example of a Veronese embedding.

9.3 Proving Affine Results for Projective

We want to construct the really nice correspondences we have in the affine case.

Definition 9.12 (Affine cone). An affine algebraic set Y ⊆ An+1 is called a cone if
∀λ ∈ k, (x0, . . . , xn) ∈ Y ⇐⇒ (λx0, . . . , λxn) ∈ Y . If X ⊆ Pn is an algebraic set, we
define the affine cone over X as

C(X) = {(x0, . . . , xn) ∈ An+1 | (x0 : · · ·xn) ∈ X} ∪ {0} ⊆ An+1.

Note that 0, the vertex of the cone, is the intersection of a bunch of lines, so it is a singular
point. This point contains a lot of data; it is a really subtle thing, and to be honest I
don’t know much about it, but broadly, geoemtric information about X is encoded in the
commutative algebra that goes on around the vertex 0.

For a geometric picture of the affine cone, basically take the union of all the lines in
An+1 represented by the homogeneous coordinates (x0 : · · · : xn). I wish I could draw this
out, but my LATEX skills stop here. For another reformulation, let I ⊆ k[x0, . . . , xn] and
X = Z(I) in the projective sense. Then, C(X) = Z(I) in the affine case, where we forget
that I is a homogeneous ideal.

Now we reconstruct Nullstellensatz for the projective case.

Proposition 9.13 (Projective Nullstellensatz)

We have the following:

1. If X1 ⊆ X2 ⊆ Pn are algebraic sets, then I(X2) ⊆ I(X1).

2. For any algebraic set X ⊆ Pn, we have Z(I(X)) = X.

3. For any homogeneous ideal J ⊆ k[X0, . . . , Xn] such that Z(J) ̸= ∅, we have
I(Z(J)) =

√
J .

4. For any homogeneous ideal J ⊆ k[X0, . . . , Xn] such that Z(J) = ∅, we have either
J = (1) or

√
J = (X0, . . . , Xn).

Equivalently, we can combine (3) and (4) by saying Z(J) = ∅ ⇐⇒ (X0, . . . , Xn)
r ⊆ J

for some r ≥ 0.

So we see that the ideal (X0, . . . , Xn) is stopping us from having a really nice time/getting
really close to Nullstellensatz in the affine case. Consequently, we give it a very derogatory
name: the irrelevant ideal, which is a bad name choice since it is actually very relevant.
Spitefulness never solves problems... (The real reason for the name irrelevant is because the
ideal gives no geometric information in Pn.)
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Proof. (1) and (2) follow from the affine case, as does the ⊇ inclusion for (3). To prove (3),
we will reduce to the affine case. If Z(J) ̸= ∅, then C(Z(J)) ̸= ∅ (they are given by the
same ideal), so we can apply affine Nullstellensatz to get I(Z(J)) =

√
J .

For (4), if Z(J) = ∅, then in An+1 (we forget J is homogeneous), we have either Z(J) = ∅
or Z(J) = {0}. Thus, either J = (1) or

√
J = (X0, . . . , Xn), which is what we wanted.

10 03/01 - More on Projective Varieties

Happy March!... wait, we’re already in March??

To make the correspondences implied by the Projective Nullstellensatz explicit, we have
the same correspondences as in the affine case (algebraic sets with radical ideals, varieties
with prime ideals, closed points with maximal ideals), except we add the condition that all
ideals are homogeneous.

10.1 Veronese Embedding and Segre Map

Here are two really important examples of varieties determined by prime ideals:

The first is the Veronese embedding. Let n, d > 0, and N =
(
n+d
n

)
− 1. Consider the

mapping

νd : Pn → PN

(x0 : · · · : xn) 7→ (xd0 : x
d−1
0 x1 : · · · : xdn),

where the monomials are ordered lexicographically. We denote the monomials as Pi, 1 ≤
i ≤ N . Then, we have a map

φ : k[Y0, . . . , YN ]→ k[X0, . . . , Xn]

Yi 7→ Pi.

Exercise 10.1. (Combinatorics) Verify that there are exactly
(
n+d
n

)
monomials of de-

gree d in x0, . . . , xn. (Many easier arguments, but one thing to note is that this corre-
sponds with the dimension of Symd V where dimV = n+ 1.)

The relations of the monomials are determined by kerφ. Thus, Im νd is cut out by the
polynomials in kerφ = I, a prime ideal.

Example 10.2 (Twisted cubic as Veronese)

The famous twisted cubic (which we’ve mentioned many times in class by now) is the
image of the map P1 ↪→ P3 where (x0 : x1) 7→ (x30 : x

2
0x1 : x0x

2
1 : x

3
1).

You will prove many things about the Veronese embedding in your homework, including
νd is a homeomorphism onto its image. These maps are nice because it turns all equations
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linear. For instance, if we want to study conics Ax2 +Bxy +Cxz +Dy2 +Eyz + Fz2 = 0,
then a priori the equation is quadratic in x, y, z. But if we consider the Veronese embedding
ν2 : P2 ↪→ P5 where (x : y : z) 7→ (x2 : xy : xz : y2 : yz : z2), then suddenly the equation for
the conic is linear in our monomials.

But perhaps you’re still not super convinced that these actually matter. To convince
you with something more concrete, the Veronese embeddings νn(P1) ↪→ Pn (the rational
normal curve) and ν2(P2) ↪→ P5 (Veronese surface) are examples of varieties of minimal
degree. We will talk about this later.

The second important example we’ll talk about is the Segre map, also featured in your
homework. Let n,m > 0, and N = nm+ n+m = (n+ 1)(m+ 1)− 1. Consider the map

φn,m : Pn × Pm ↪→ PN

((x0 : · · · : xn), (y0 : · · · : ym)) 7→ (· · · : xiyj : · · · )ij.

Order the monomials lexicographically. Then, we can take the homomorphism

f : k[Z11, . . . , Zij, . . . , Znm]→ k[X0, . . . , Xn, Y0, . . . , Ym]

Zij 7→ XiYj.

The kernel ker f realizes Pn × Pm as a projective variety in PN !

Example 10.3

The most famous example is also the simplest one. Take n = m = 1 and the map

Q : P1 × P1 ↪→ P3

(x0 : x1), (y0 : y1) 7→ (x0y0 : x0y1 : x1y0 : x1y1).

The image is a hypersurface given by the equation Y0Y3 − Y1Y2 = 0. We call this the
quadric surface in P3. To practice more with this, look at Exercise 2.15 in Hartshorne.

10.2 Functions and Morphisms on Projective Varieties

Definition 10.4 (Field of rational functions). Let X be a projective variety and
S(X) = k[X0, . . . , Xn]/I(X) =

⊕
d S(X)d. (S(X)d is the degree-d part of the graded

ring.) The field of rational functions is

K(X) = {f/g | f, g ∈ S(X)d for some d, g(x) ̸= 0}.

Note that we require f, g ∈ S(X)d and not just S(X) in order for these rational functions
to be well-defined on homogeneous coordinates.

Given this, we can talk about local information: for all x ∈ X, define

OX,x = {f/g ∈ K(X) | g(x) ̸= 0}
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and ∀U ⊆ X open,

OX(U) =
⋂
x∈X

OX,x.

Now we can talk about morphisms as in Proposition 8.13 between (open subsets of) projec-
tive varieties.

Remark 10.5. We call open subsets of projective varieties as quasi-projective vari-
eties.

Definition 10.6. A continuous map f : X → Y is a morphism if one of the following
equivalent definitions holds:

1. ∀U ⊆ Y open, f ∗(OY (U)) ⊆ OX(f
−1(U)).

2. ∀x ∈ X and φ ∈ OY,f(x), f
∗(φ) ∈ OX,x.

3. There exists an open cover {Ui}i of Y such that (1) holds for all Ui. (Note this is
strictly weaker than (1).)

So information about the morphism is embodied in the open subsets, i.e. morphisms are
determined by their local behavior. Following (3), we want to take a convenient open cover
for our projective varieties. Luckily, we have one at hand.

The standard affine open cover consists of basically the complements of the hyper-
planes. More specifically, we have opens Ui = {(x0 : · · · : xn) | xi ̸= 0} ⊆ Pn which is
isomorphic to An = {(y0, . . . , yi−1, 1, yi+1, . . . , yn) | y0, . . . , ŷi, . . . , yn ∈ k}. (ŷi just means it
is excluded.) You can think of the map Ui

∼−→ An as xj 7→ xj/xi = yj.

Example 10.7 (Affine Opens in Projective Varieties)

Let X ⊆ Pn be closed, and suppose X =
⋃n

i=0Xi where Xi = X∩Ui are affine algebraic
sets. We have X = Z(F1, . . . , Fr) where the Fj’s are homogeneous polynomials. Say
i = 0. Then, we can let fj(x1, . . . , xn) = Fj(1, x1, . . . , xn) for 1 ≤ j ≤ r, and denote
Y = Z(f1, . . . , fr) ⊆ An. We now have a map from affine opens in X to the affine
variety Y :

φ : X0 = X ∩ U0 → Y

(x0 : · · · : xn) 7→
(
x1
x0
, . . . ,

xn
x0

)
,

φ−1 : Y → X0

(x1, . . . , xn) 7→ (1 : x1 : · · · : xn).

So this is good and all, since we know what morphisms are between affine varieties and we
can just reduce our scenario in the projective case to the affine case via taking the standard
affine open cover, yada yada. But this relies on taking local information, and in projective
space, there exists better global statements.
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Lemma 10.8

Let X ⊆ Pn be a projective variety, and F0, . . . , Fm ∈ k[X0, . . . , Xn] be homogeneous
polynomials of the same degree such that ∀x ∈ X, ∃ j such that Fj(x) ̸= 0. Then, the
mapping

f : X → Pm

x 7→ (F0(x) : · · · : Fm(x))

is a morphism.

Admittedly, we prove this by taking an affine open cover, but the result is global, which is
nice.

Proof. f is well-defined set theoretically because the Fi’s are homogeneous of the same
degree. It is also continuous, since it is given by polynomials. Consider the standard open
cover {Vi}0≤i≤m of Pm, where Vi = (yi ̸= 0). Consider Ui = f−1(Vi). Then, the restriction
of f onto the Ui’s look like

f |Ui
: Ui → Vi

x 7→
(
Fj(x)

Fi(x)

)
j=0,...,̂i,...,n

.

By definition, for x ∈ Ui, we have Fi(x) ̸= 0, so f |Ui
is regular.

Definition 10.9 (Bihomogeneous). A polynomial F ∈ k[X0, . . . , Xn, Y0, . . . , Ym] is
called bihomogeneous of bi-degree (d, e) if ∀λ, µ ∈ k,

F (λx0, . . . , λxn, µy0, . . . , µym) = λdµeF (x0, . . . , xn, y0, . . . , ym).

In other words, F will look homogeneous of degree d if you fix all the yj’s, and homogeneous
of degree e if you fix all the xi’s. A bihomogeneous polynomial, therefore, defines a subset
of Pn×Pm. Turns out that bihomogeneous polynomials define all closed subsets of Pn×Pm.

Proposition 10.10

A closed subset of Pn × Pm is exactly the zero locus of a collection of bihomogeneous
polynomials.

Remark 10.11. Note here this is the topology induced by the Segre map, not the
product topology. The product topology is bad for our purposes! If we took the
product topology, then a lot of curves which we expect to be closed will not be closed.

Hahn Lheem Page 47



Math 137: Algebraic Geometry 03/06 - Projective Varieties are Complete

Proof. The closed subsets are of the form φ−1
n,m(Z) where Z ⊆ PN is closed and φn,m :

Pn × Pm ↪→ PN is the Segre map. We have Z = Z(F1, . . . , Fr) where the Fi’s are homo-
geneous polynomials of degree di over the variables Zij. Taking the Zij’s under the map
k[. . . , Zij, . . . ]→ k[X0, . . . , Xn, Y0, . . . , Ym], we can define each Fk as defined over the X, Y
variables to get Fk(XiYj) a bihomogeneous polynomial of bidegree (dk, dk). We now invoke
the following exercise:

Exercise 10.12. Suppose G is bihomogeneous of bidegree (d, e). Then, Z(G) is the
same as the zero locus of Xe

i Y
d
j G for all i, j.

Proof of this exercise is left to the reader (just think about it for a little bit). This result
finishes the proof because

Example 10.13

Revisit the Segre map P1 × P1 ↪→ P3 where ((x0 : x1), (y0 : y1)) 7→ (x0y0 : x0y1 :
x1y0 : x1y1). As noted before, the image is a hypersurface defined by Y0Y3 − Y1Y2 = 0
in P3. (Y0 = x0y0, Y1 = x0y1, etc.) We also have the twisted cubic given by the
Veronese embedding ν3 : P1 ↪→ P3. We see that C = ν3(P1) is given by the equations
Y0Y3 − Y1Y2 = 0, Y 2

1 − Y0Y2 = 0, and Y 2
2 − Y1Y3 = 0. Call the surfaces carved out by

these equations as Q,Q′, Q′′. We note Q = φ11(P1×P1), and we have C = Q∩Q′ ∩Q′′.

Looking at Q′ and Q′′ in terms of xi, yj, we have (x0y1)
2 = (x0y0) · (x1y0) and

(x1y0)
2 = (x0y1) · (x1y1). Combining, this gives us x1y

2
0 = x0y

2
1, which is a bihomo-

geneous polynomial of bidegree (1, 2). This gives us a unique curve on the quadric
surface.

11 03/06 - Projective Varieties are Complete

11.1 Completeness of Projective Varieties

We have some nice topological properties for projective varieties. First, a projective variety
is separated.

Lemma 11.1

If X is a projective variety, the diagonal ∆ = ∆X := {(x, x) | x ∈ X} ⊆ X × X is
closed.

Proof. We have ∆X = ∆Pn ∩ (X × X). Thus, it suffices to show ∆Pn is closed. But
((x0 : · · · : xn), (y0 : · · · : yn)) ∈ ∆Pn iff the rank of(

x0 · · · xn
y0 · · · yn

)
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is at most 1. But this is equivalent to saying xiyj = xjyi for all i, j, which are bihomogeneous
of bidegree (1, 1), so it forms a closed subset of Pn × Pn. The conclusion follows.

We now introduce the notion of a complete variety, which is a really important prop-
erty.

Definition 11.2 (Complete). An algebraic variety Y is complete if for all algebraic
varieties X, we have that p2 : Y ×X → X is closed, i.e. images of closed sets are closed.

Theorem 11.3

Every projective variety is complete.

We will prove this after spring break, once we talk a bit about blow-ups. This will give us
a trick to reduce Y to P1, which makes life a lot easier. But for now, we take for granted.

Example 11.4

A non-example. If X = (xy = 1) ⊆ A2 and p2 : A2 = A1 × A1 → A1 is given by
(x, y) 7→ x, then we can note p2(X) = A1 \ {0} is not closed in A1, so A1 is not
complete.

This theorem is really significant, as we’ll now see. Many of these corollaries we’ve hoped
to be true turn out to hold given the theorem!

Corollary 11.5

If X is a projective variety, then every morphism φ : X → Pn is closed. (Consequently,
any morphism φ : X → Y ⊆ Pn is closed.)

Proof. The inclusion map Γφ : X ↪→ X × Pn mapping x 7→ (x, φ(x)) is closed, and by our

Theorem, X × Pn p2−→ Pn is closed, so φ : X
Γφ

↪−→ X × Pn p2−→ Pn is closed!

Corollary 11.6

Every regular function on a projective variety X is constant.

This is the algebraic geometry analogue to the complex analysis fact that any holomorphic
function on all of the complex plane is constant.

Proof. From above (Corollary 11.5), the image of f : X → A1 ↪→ P1 is closed. Since X is a
projective variety, it is irreducible, so f(X) = f(X) is also irreducible (Lemma 8.15). But
then f(X) must be a point, since it is irreducible in P1.

The corollaries just keep coming.
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Corollary 11.7

The only projective subvarieties of affine varieties are the points.

Proof. Let X be affine, and A(X) the algebra of functions on X. We have A(X) = k only
if I(X) is maximal, i.e. X is a point, and we conclude.

Corollary 11.8

Let X ⊆ Pn be a projective variety different from a point. Then, if H ⊆ Pn is any
hypersurface, then X ∩H ̸= ∅.

Proof. Assume there exists H = Z(F ) ⊆ Pn, where F is homogeneous of degree d, such
that H ∩X = ∅. Note then for all G homogeneous of degree d, G/F is a regular function
on X, so G/F is constant on X by Corollary 11.6. But then under the Veronese embedding
νd : Pn → PN , X will just map to a point, which is a contradiction since the Veronese
embedding is an inclusion.

11.2 Applications to Varieties with Group Structure

Theorem 11.9 (Rigidity Lemma, I)

Let φ : V ×W → Z be a regular map of (quasi-projective) varieties such that ∃ v0 ∈
V,w0 ∈ W, z0 ∈ Z such that φ({v0} ×W ) = φ(V × {w0}) = {z0} and V is complete.
Then, φ(V ×W ) = {z0}.

Proof. Let’s start with the information about completeness that we have. p2 : V ×W → W
is closed by completeness of V . Let z0 ∈ U ⊆ Z be an affine open neighborhood, and define

T := p2(φ
−1(Z \ U)).

Since Z \ U is closed, the preimage is closed, so T is closed since p2 is a closed map. We
have W \ T = {w ∈ W | φ(V ×W ) ⊆ U}. Since w0 ∈ W \ T , we know W \ T ̸= ∅, so we
can choose some w ∈ W \ T .

Noting that V ×{w} is a complete projective variety and φ(V ×{w}) ⊆ U for affine open
U , Corollary 11.7 tells us that φ(V ×{w}) is a point for all w ∈ W \T . Even better, noting
that φ({v0} × {w}) = {z0} and v0 ∈ V , we have φ(V × {w}) = {z0} for all w ∈ W \ T , so
it is constant on V × (W \ T ) ⊆ V ×W . But this is an open dense subset, so φ is constant
on all of V ×W , as desired.

As mentioned by the section title, this has some nice applications to algebraic groups.
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Definition 11.10 (Algebraic Group). An algebraic group is a quasi-projective vari-
ety G with a group structure such that G×G→ G mapping (g, g′) 7→ gg′) and G→ G
(g 7→ g−1) are both morphisms of varieties.

Example 11.11

The additive and multiplicative groups Ga := (k,+) and Gm := (k×, ·) are varieties
with a group law. We also note that GLn(k) ⊂ Mn(k) ∼= An2

is the complement of
(det = 0), hence it is a variety. It has a group law under multiplication. Similarly,
SLn(k) ⊂Mn(k) is the variety defined by (det = 1), so it too is an algebraic group.

Definition 11.12 (Abelian Variety). An abelian variety is a projective algebraic
group.

Example 11.13

Elliptic curves are abelian varieties! They are projective varieties, and they have a
(really cool) group law.

The group operation for elliptic curves being commutative is clear once you define the
operation, but it is not clear at all a priori that any projective algebraic group turns out to
be abelian. We will prove this shortly, after we lay out the following result.

Corollary 11.14

Every morphism α : A → B between abelian varieties is the composition of a group
homomorphism and a translation.

A translation is a map G
ta−→ G for some a ∈ G such that g 7→ a+ g.

Proof. After a translation, we may assume α(0) = 0. Define φ : A × A → B given by
φ(a, a′) = α(a+a′)−α(a)−α(a′). Computing explicitly, we have φ({0}×A) = φ(A×{0}) =
{0}, so by the Rigidity Lemma (Theorem 11.9), φ = 0, i.e. α is a group homomorphism, as
desired.

Now for what we wanted:

Corollary 11.15

The group law on an abelian variety is commutative.

Proof. Slick proof. Consider the inverse map ι : A → A where a 7→ a−1 and 0 7→ 0. This
is a morphism by definition of algebraic group. At the same time, by the above corollary
(11.14), we have (ab)−1 = a−1b−1. But for groups in general, (ab)−1 = b−1a−1, so ab = ba,
as desired.
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Note that the one fact that drove us up to here is Theorem 11.3. Everything just
kinda fell like dominoes from it! Hopefully this is enough to convince you that it is a very
important fact, and one that we’ll prove after spring break.

11.3 Chevalley’s Theorem

We’re now going to shift gears a little bit. Let’s look at an innocuous-looking morphism.
Consider φ : A2 → A2 where (x, y) 7→ (x, xy). (I would draw cool diagrams to accompany
this, but alas.) The horizontal lines map to lines through 0 except for the y-axis, and the
y-axis maps to the origin, and all other vertical lines maps to themselves. So the resulting
picture is kinda like a bunch of vertical lines and lines through the origin with the y-axis
missing and replaced by a huge origin. This is a really weird image.

Definition 11.16 (Locally Closed). A locally closed subset of a topological space is
the intersection of a closed set and an open set.

By “really weird image” I mean that it is not only neither open nor closed, but it is not
locally closed.

Definition 11.17 (Constructible). A finite union of locally closed subsets is a con-
structible set.

Luckily, though, Imφ is constructible, since it is the union of {(0, 0)} and {A2 \ (x = 0)}.
This is a very fundamental construction (no pun intended), and the one we truly care about:

Theorem 11.18 (Chevalley)

If f : X → Y is a morphism of quasi-projective varieties, then f(X) is a constructible
set.

(Usually, the theorem comes with more information about the dimensions of the fibers and
such, but we will discuss that later.)

12 03/08 - Rational Maps

Today, we will introduce rational maps in the projective setting.

Example 12.1

Let V be a vector space over k, say V = U⊕W . We have a projection map pW : V → W .
Let P(V ) be the set of all 1-dimensional subspaces of V . We see that since V ∼= kn+1

for some n, we have an isomorphism P(V ) = Pn. Note P(U),P(W ) ⊆ P(V ). Note that
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then, the “projection outside of P(U)” given by p : P(V ) \ P(U)→ P(W ) is induced by
pW . This p is a morphism; verification is left as an exercise.

Example 12.2

As an example of the above, suppose dimU = 1. Then, P(U) is just a point, say u,
and we have p : Pn \ {u} → Pn−1 as given by p(x) = ux ∩ Pk−1. (Here, ux is the line
through u and x.) One can give a smiliar description for arbitrary U ; this is also left as
an exercise.

Now we go ahead and define rational maps. Let X, Y be (quasi-projective) varieties.
Consider the pairs (u, U) where U ⊆ X is open and u : U → Y is a morphism. We define
an equivalence relation (u, U) ∼ (v, V ) if u and v coincide on U ∩ V .

Definition 12.3 (Rational Map). A rational map X → Y is an equivalence class of
such pairs. We denote as u : X 99K Y . We say that u is defined at x ∈ X if it has
a representative (u, U) such that x ∈ U . The domain of definition of u is the set of
points where u is defined; this is an open subset of X.

Definition 12.4 (Rational Function). A rational function is a rational map X 99K
A1 = k.

We should check that this definition of rational function matches our old one, an element
in the field of fractions of the coordinate ring.

Proposition 12.5

Let X be a quasi-projective variety. Then, the rational functions on X form a field
K(X) which is a k-extension. If ∅ ̸= U ⊆ X is open, then K(U) = K(X). If X is
affine, then K(X) = Q(A(X)). (This is the old definition.)

Proof. Note that any v : V → k is equivalent to v|V ∩U : V ∩ U → k given V ∩ U ̸= ∅ for
U ⊆ X open. This proves the first part. For the second, let f/g ∈ Q(A(X)). We associate
this to a rational function f/g : X \Z(g)→ k, where the domain here is open. This proves
one inclusion Q(A(X)) ⊂ K(X).

Now we start with u : U → k a regular function. Define Y = X \ U ⊆ X a closed
affine subset. Then, there exists a function h on X such that h = 0 on Y (e.g. consider
any h ∈ I(Y )). Let Xh = X \ Z(h) be the distinguished affine. We can associate A(Xh)
with A(X)h, the latter being localization at the element h. (This is an exercise, which you
probably did in some fashion on your homework.)

This means that on V , we may write u = g
hp for some p ≥ 0. But now we have

g/hp ∈ Q(A(X)), so we have associated u with some element in Q(A(X)). We can check
that these mappings are inverse to each other (left for you to check), and so we conclude.
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12.1 Dominant Rational Maps

Recall that a morphism φ : X → Y is dominant if φ(X) = Y . Although rational maps
are not morphisms themselves, we can define dominance for them as well:

Definition 12.6 (Dominant rational map). A rational map u : X 99K Y is dominant
if it has a regular representative which is dominant.

Remark 12.7. If u : X 99K Y is dominant, we can compose it with another rational
map v : Y 99K T . In particular, for T = k, we can compose with a rational function
φ : Y 99K k. This induces a field homomorphism u∗ : K(Y ) ↪→ K(X), and this map is
a k-extension. So dominance is a pretty important property to us, as we’ll continue to
see below.

Proposition 12.8

Let X, Y be (quasi-projective) varieties.

1. The correspondence given by u 7→ u∗ gives a one-to-one mapping between the sets
{dominant rational maps u : X 99K Y } and {k − extensions K(Y ) ↪→ K(X)}.
(This is in fact an equivalence of categories, i.e. it is functorial, so the correspon-
dence is nicer than at first glance.)

2. u∗ is an isomorphism iff u induces an isomorphism between non-empty open sets
U ⊆ X and V ⊆ Y . We call u a birational map; in complex analysis, these
would be bi-meromorphic functions. X, Y are birational if there exists a birational
map between them.

Proof. Let i : K(Y ) ↪→ K(X) be a field extension over k. We want to construct a rational
map u : X 99K Y . We may assume X ⊆ Am, Y ⊆ An are affine, so K(X) = Q(A(X)) and
K(Y ) = Q(A(Y )). Let {yj} be the generators of A(Y ) as a k-algebra, and let i(yj) =

aj
bj
∈

K(X) where aj, bj ∈ A(X). This induces a map of k-algebras

i : A(Y ) ↪→ A(X)b1···bn

yj 7→
aj
bj
.

But Xb1···bn is a distinguished open affine in X, so this gives us a morphism u : X \ Z(b1 ·
· · · · bn)→ Y . Even better, as i is injective, one of your homework exercises tells us that u
is dominant.

Definition 12.9 (Birational Morphism). If a morphism u : X → Y is a birational map,
we call it a birational morphism.
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12.2 Aside: Rational Varieties

We can also slap on these adjectives to the varieties themselves:

Definition 12.10 (Rational, Unirational Variety). A variety X is rational if it is
birational to Pn. A variety X is unirational if there exists a dominant rational map
u : Pn 99K X.

Note that given our Proposition (12.8), these strictly properties in field theory: for rational,
we just need K(X) to be a purely transcendental extension of k, and for unirational, K(X)
is a subextension of k inside a purely transcendental extension.

But is defining unirational even necessary? Or are all unirational varieties just rational
after all?

Is every unirational variety actually rational?

You may recall from the beginning of this class when we were talking about curves (which
have transcendence degree 1), Lüroth’s Theorem tells us that any subextension of a purely
transcendental extension of degree 1 is the whole extension itself, so the answer for curves
is a resounding yes. There is a remarkable result (very geometric proof) by Castelnuovo
which tells us that the answer is yes for surfaces in general. This is one of the last results
in Hartshorne, for those interested.

But our luck stops there. This already fails in dimension 3, the first counterexamples
being a cubic 3-fold X3 ⊂ P4 given by Clemens-Griffiths and a quartic 3-fold given by
Iskovskih-Manin.

The answer is unknown for 4-folds X3 ⊆ P5. This is a very active field of algebraic
geometry, and Popa mentioned a bit more of the story in class, but whew it is a lot haha.

12.3 Blow-Ups

Let’s start with a motivating example. Let’s blow up some points in Pn, mwahahaha.

Let x0 ∈ Pn, H ⊆ Pn hyperplane (H ∼= Pn−1) such that x0 /∈ H. Choose coordinates
such that x0 = (0 : · · · : 0 : 1) and H = Z(xn). Then, we have a rational map p : (x0 : · · · :
xn) 7→ (x0 : · · · : xn−1).

When we blow-up a point, we’re going to consider the point as the union of lines passing
through that point. We do this by the following.

Consider the graph of p, given by

Pn × Pn−1 = Pn ×H ⊇ Γp = {(x, y) | x ̸= x0, (x0 : · · · : xn−1) = (y0 : · · · : yn−1)}.

Take Γp ⊆ Pn×Pn−1. The equations defining Γp are given by XiYj = XjYi for 0 ≤ i, j ≤ n.

We denote P̃n := Γp as the blow-up of Pn at x0.

We have projection maps π : P̃n ⊆ Pn × Pn−1 → Pn and q : P̃n ⊆ Pn × Pn−1 → Pn−1.
The first projection π is the blow-up map. The fibers of π look like:
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• if x ̸= x0, then π
−1(x) = {x}

• if x = x0, then π
−1(x) = H = Pn−1.

This is what we are trying to get at geometrically: fill this in!

13 03/20 - Blow-Ups

This lecture and the next were recorded over Zoom since Prof Popa was not on campus.
We will first discuss blow-ups of points in Pn, which is a natural place to start because we
have projection maps readily available to us.

13.1 Blow-Up of Projective Space

We talked about this setup at the end of last class, but we will repeat it here. First, choose
some point x0 ∈ Pn, WLOG x0 = (0 : 0 : · · · : 0 : 1), and choose some hyperplane H ̸∋ x0,
WLOG H = Z(xn). Then, we have a projection map

p : Pn \ {x0} → H ≃ Pn−1

(x0 : · · · : xn) 7→ (x0 : · · · : xn−1).

Then, we can define the blow-up

Blx0(Pn) = P̃n := Γp ⊆ Pn × Pn−1

carved out by the equations XiYj = XjYi for 0 ≤ i, j ≤ n− 1. (This is just saying that the

first n coordinates must match between the Pn and Pn−1 components. The blow-up P̃n has
two natural projections: P̃n π−→ Pn, which is just the blow-up map, and P̃n → Pn−1.

We can study the fibers of the blow-up map π. Over x ̸= x0, one can check that
π−1(x) = x (given the Pn-component, the homogeneous coordinates in Pn−1 are determined).
But over x = x0, since xi = 0 for 0 ≤ i ≤ n − 1, Γp is given by no nonzero equations, so
π−1(x0) = H = Pn−1.

The geometric intuition is along the lines of the following: if given x0 and some x ̸= x0,
then there is a unique line passing through the two points, whereas given just x0, we can
go in any direction. So this is blowing up x0, as it extracts the point and replaces it with a
copy of Pn−1. In short, we are treating the points in Pn−1 as lines in Pn passing through x0.

Building on this correspondence between points in Pn−1 and lines in Pn through x0, we
can think of P̃n as the set {(x, ℓ) | x ∈ ℓ} ⊆ Pn×Pn−1. This is an example of an incidence
correspondence.

Explicitly, we have that π thus induces a birational morphism π : P̃n \H → Pn \ {x0}.
Looking at the other projection q : P̃n → Pn−1, we observe that once we specify some

line [ℓ] ∈ Pn−1, then its pre-image q−1([ℓ]) is just the line ℓ, hence is isomorphic to P1. We
call this the “tautological bundle” because we’re not really gaining anything new from
this observation.
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Exercise 13.1. (If you want to play around with this a little more) Let {Ui}n−1
i=0 be the

standard open affine cover of Pn−1 = H. Then,

q−1(Ui) ∼= Ui × P1.

13.2 Blow-Up of Projective Variety

So that’s the blow-up of Pn, but in fact we can blow-up any subvariety of Pn.

Definition 13.2 (Blow-up of Projective Variety). Let X ⊆ Pn be a subvariety, x0 ∈ X.
The blow-up of X at x0 is

X̃ := π−1(X \ {x0}) ⊆ P̃n.

Popa drew a nice diagram, which I have a hard time replicating here but I will do my best
explaining in words.

Example 13.3

(describing Popa’s picture in words) We can take a variety X in P2 like a cubic with

a singular point x0 (node). Then, the pre-image of X \ {x0} in P̃n is a 1-1 lifting, so
it looks like a non-intersecting curve with two distinct points missing, where the two
points lie over x0. Taking the closure, you complete the curve. The two points lying
over x0 correspond to the two tangent lines of the curve at x0 in P2.

This blow-up construction turns out to be intrinsic and not dependent on any embed-
ding.

Fact 13.4. The birational morphism π : X̃ → X is independent of the choice of
embedding X ⊆ Pn.

13.3 Local Version

Looking locally in our projective space, we can now consider blow-ups of An, and then for
any subvariety of An. Denote O := (0, . . . , 0) ∈ An. Then, we can define π : Bl0(An) =

Ãn → An as basically dehomogenizing the previous construction with respect to xn. In
particular, by thinking of An as a variety of Pn, we can consider the composition map
π : Ãn ↪→ An×Pn−1 ↠ An, where Ãn is defined in An×Pn−1 by the equations XiYj = XjYi
for 0 ≤ i, j ≤ n− 1.

The arguments from above apply here. If x ̸= 0 in An, then π−1(x) is a single point,

so π : Ãn \ π−1(0) → An \ {0} is an isomorphism (one can think of it as just the identity),
with inverse ψ : (x0, . . . , xn−1) 7→ ((x0, . . . , xn−1), (x0 : · · · : xn−1)). For the pre-image of 0,

just as before, this would make all equations defining Ãn vanish, so π−1(0) is all of Pn−1,
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i.e. the set of all (0, (y0 : · · · : yn−1)). So we may interpret Pn−1 here as the set of lines in
An passing through the origin.

Cue Popa drawing yet another diagram which I cannot replicate. Luckily, the Zoom
recording will be kept until the end of class, so you can review it there! But the idea is
similar to the example I tried to illustrate, literally.

Actually, here is a picture I snagged from online. The bottom is the affine plane, which
lifts to the blow-up. The horizontal lines represent the pre-images of the lines in A2 passing
through the origin, and the vertical line is the fiber of 0.

Figure 1: Credit: Andreas Gathmann

Remark 13.5. This is just the picture over R. The picture for the blow-up over C is
a bit more complicated, but the idea is similar.

Just to give it a name, the codimension-1 subset π−1(0) is called the exceptional divisor
(or exceptional locus) of π. (“Divisor” is a special term in algebraic geometry that we
won’t discuss in this class.)

Remark 13.6. Let L be a line. Then, π−1(L \ {0}) intersects π−1(0) in the point

corresponding to L. As a consequence, Ãn \ π−1(0) ∼= An \ {0} is dense in Ãn, which

makes it irreducible. The same follows for P̃n.

We note, though, that Ãn is a bit cumbersome to deal with because it is neither affine nor
projective. But for any variety, we can cover it with affine charts, and we know how to
make computations on affines. Thus, to make any sort of computation, we will want to use
affine coordinate charts. There is a standard way to cover the exceptional divisor Pn−1 by

the standard open affines ∼= An−1. We demonstrate on Ã2 ⊆ A2 × P1.

On P1, we have two affine opens: U0 = (Y0 ̸= 0) and U1 = (Y1 ̸= 0). If Y0 ̸= 0 (i.e. on U0),
then since we can write (y0 : y1) = (1 : y1/y0), we are just considering coordinates in A2×A1

(the A1 is given by u = y1/y0). On here, Ã2 is defined by x0y1 = x1y0 =⇒ x1 = x0 · u.
So on U0 ∩ Ã2, the blow-up map is the map A2 → A2 given by (x, u) 7→ (x, xu). (We just
represent (x0, x1) by just x since given x0, we can uniquely determine x1.)
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Remark 13.7. This is exactly the same picture as the motivating example for Cheval-
ley’s Theorem! (This is given in the beginning of §11.3.) In particular, the image is not
locally closed.

For Y1 ̸= 0 (i.e. on U1), the coordinates on A2 × A1 are given by x0, x1, and v = y0/y1.

Thus, Ã2 is given by x0 = v · x1, and the blow-up map π on U1 ∩ Ã2 is roughly the same,
taking (v, y) 7→ (vy, y).

Remark 13.8. Here, it’s just a coincidence that the charts on Ã2 are isomorphic to
A2, but the procedure for determining the blow-up map on affine charts is the same in
general.

Definition 13.9 (Transforms). Let Y ⊆ An be a closed subset, and π : Ãn → An is
the blow-up map. The total transform of Y is π−1(Y ), and the proper transform

of Y is Ỹ := π−1(Y \ {0}).

The proper transform Ỹ is basically our blow-up, as it is in Example 13.3.

Definition 13.10 (Blow-Up of Y ). If Y is a subvariety of An such that 0 ∈ Y , then

the blow-up of Y at 0 is π : Ỹ → Y .

We will finish out the lecture with a couple of concrete calculations. We’ll take curves in
A2 and consider its blow-up on the standard affine charts to make computations upstairs.
We begin with smooth curves.

Example 13.11 (Blow-up of smooth)

Let Y = (y = x2) ⊂ A2. On U0 = (Y0 ̸= 0) ⊆ A2 × A1, coordinates are given by
y = ux (here, A2 has coordinates (x, y) and A1 has coordinate u). Then, π∗(y − x2) =
ux − x2 = x(u − x), so the pullback is the exceptional divisor (x = 0) plus another
curve/line transverse to (x = 0).

On U1 = (Y1 ̸= 0), coordinates are given by x = vy, so π∗(y − x2) = y − v2y2 =
y(1 − v2y), so the pullback is the exceptional divisor (y = 0) plus the curve given
by 1 − v2y, for which (y = 0) is asymptotic but never intersects. Extending to P1,
though, the curve intersects the exceptional divisor at the point of infinity, given by the
intersection point in the first affine chart.

Putting these two pictures together, the image of the blow-up map π : Ã2 → A2

consists of parabolas going through the origin. Considering the pre-image upstairs,
π−1(0) is the exceptional divisor ∼= P1, and for any parabola, its pre-image is a curve
which intersects the exceptional divisor exactly in the point that corresponds to the
tangent direction of the parabola.

Now, we advance things by introducing singular points, starting first with a node.
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Example 13.12 (Blow-up with node)

Let Y = (y2 = x2 + x3) ⊆ A2. On U0 = (Y0 ̸= 0), the coordinates are given by y = ux,
so π∗(y2−x2−x3) = u2x2−x2−x3 = x2(u2−1−x). Thus, the pullback consists of the
exceptional divisor given by x2 = 0, the doubled line, plus another curve intersecting it
at u = ±1.

For U1 = (Y1 ̸= 0), the coordinates are given by x = vy, so π∗(y2 − x2 − x3) =
y2 − v2y2 − v3y3 = y2(1 − v2 − v3y). The pullback consists of the exceptional divisor
(y2 = 0), again a doubled line, plus a curve intersecting it at v = ±1.

Globally, we note that on U0 ∩ U1, we have u = 1
v
, so the intersection points (±1)

must be the same. Thus, given Y ⊆ A2 in the image of π, the blow-up is given by the
exceptional divisor π−1(0) = E ≃ P1 and a curve which intersects E twice, at the points
corresponding to the tangent directions of Y at the origin.

Remark 13.13. Although all of our examples have taken singularities and turned them
into good ol’ transverse intersections, this is not always the case with blow-ups. But it
is a good start to dealing with singularities!

14 03/22 - Proof of Theorem 11.3

Today, we will use blow-ups to prove the incredible Theorem 11.3, a result which we used
to prove a whole series of other nice results. To do this, we will do a brief overview of
resultants and elimination theory.

14.1 Resultants and Elimination Theory

We will start simple by taking polynomials in just one variable. Let f, g ∈ k[Y ], deg f = d,
and deg g = e. We want to find a way to determine if f and g have a common nontrivial
factor.

Resultants give us a nice tool for this. Suppose f and g do have some common factor, so
f = hf ′ and g = hf ′. Seeing that f, g | hf ′g′, we have that there must exist a polynomial
of degree ≤ d+ e− 1 divisible by both f and g. Denote

Vf = {polynomials of deg ≤ d+ e− 1 divisible by f}
Vg = {polynomials of deg ≤ d+ e− 1 divisible by g}.

Vf and Vg are both vector spaces over k, and from our above observation, they intersect
nontrivially. We can find a spanning list for each vector space: Vf is spanned by f, Y ·f, Y 2 ·
f, . . . , Y e−1·f and Vg is spanned by g, Y ·g, Y 2·g, . . . , Y d−1·g. Nontrivial intersection between
these two vector spaces means that the above spanning vectors are linearly dependent.

We have a nice way of formulating this in linear algebra terms. Let f = a0+a1Y + · · ·+
adY

d and g = b0+b1Y + · · ·+beY e. Linear dependence of the spanning vectors is equivalent
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to saying that the following determinant is equal to 0:

R(f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 . . . ad 0 0 . . . 0
0 a0 a1 . . . ad−1 ad 0 . . . 0
0 0 a0 . . . ad−2 ad−1 ad . . . 0
...

...
...

...
...

...
...

...
...

0 0 . . . a0 a1 a2 . . . ad−1 ad
b0 b1 . . . be 0 0 . . . 0 0
0 b0 b1 . . . be 0 . . . 0 0
...

...
...

...
...

...
...

...
...

0 0 . . . . . . 0 b0 b1 . . . be

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

To reiterate, f, g have a common factor iff R(f, g) = 0.

We can use this to have a similar result in projective. If we homogenize f = adY
d +

ad−1Y
d−1Z + · · ·+ a0Z

d and likewise for g, then res(f, g) = 0 iff f, g have a common zero in
P1. (If ad = be = 0, then the common zero is (1 : 0) =∞.)

Furthermore, this resultant R(f, g) can be seen as a “universal polynomial” in the co-
efficients of f and g: it still makes sense if the coefficients are in some commutative ring
over k, in particular in k[x1, . . . , xn]. Considering then f, g ∈ k[x1, . . . , xn][Y ], we have
R(f, g) ∈ k[x1, . . . , xn] has the following property:

Property 14.1. For all t1, . . . , tn ∈ k, R(f, g)(t1, . . . , tn) = 0 iff f(t1, . . . , tn, Y ) and
g(t1, . . . , tn, Y ) have a common root (as polynomials in Y ).

Now, using this theory of resultants, we will prove our big theorem.

14.2 Proving Theorem 11.3

We’ll set straight some notation. Let Y be a projective variety, X be any variety, Z ⊆ X×Y
some closed subset. We wish to show that given the projection map pX : X × Y → X, the
image pX(Z) is closed.

Proof. First, we will prove the case for Y = P1 and X = Pm. The next steps will be
reductions of this step: after this, we will make X arbitrary, then we make Y arbitrary.
For our initial case, we have Z ⊆ Pm × P1. Let the coordinates for Pm and P1 be (x0 :
· · · : xm) and (y0 : y1), respectively. I(Z) is generated by bihomogeneous polynomials
F (X0, . . . , Xm, Y0, Y1); we can write each F as

F = ad(x) · Y d
0 + ad−1(x) · Y d−1

0 Y1 + · · ·+ a0(x) · Y d
1 ,

where the coefficients ai are all homogeneous of the same degree. Dehomogenize by Y1, and
look at F ′ = F (X0, . . . , Xm, Y, 1) ∈ k[X0, . . . , Xm][Y ]. We have the following claim:
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Claim 14.2. Let F,G be bihomogeneous as above, and dehomogenize them to F ′, G′.
Then, R(F ′, G′) is a homogeneous polynomial in k[X0, . . . , Xm] that vanishes on pX(Z).

This will give us one part of the proof. To complete the proof, we need to show the
converse, in which case we have written pX(Z) as the vanishing locus of a set of homogeneous
polynomials.

Proof. Suppose x = (x0 : · · · : xm) ∈ pX(Z). Then, ∃ (y0 : y1) ∈ P1 such that (x, (y0 : y1)) ∈
Z, i.e. F (x0, . . . , xm, y0, y1) = 0 for all F ∈ I(Z). We have two cases. If y1 ̸= 0, then y0/y1
is a common zero for all F ′, so R(F ′, G′)(x) = 0. If y1 = 0, then plugging in y1 = 0 into
F ′ gives us ad(x)Y

d
0 = 0, so x must be a common zero for all dominant coefficients ad(x).

Looking at the last column of the resultant, we see that the resultant evaluates to 0, as
desired.

Now it suffices to prove the converse, i.e. if all resultants vanish at a point, then that
point belongs in pX(Z). Suppose all R(F ′, G′) vanish at x, WLOG assume x0 ̸= 0. Again,
we have cases. If x is a zero of all dominant coefficients ad of the (F ′)’s, then the point
(x, (1 : 0)) ∈ Z, so x ∈ pX(Z).

If x is not a common zero of all dominant coefficients, then there exists some F0 ∈ I(Z)
such that its dominant coefficient F ′

0 is not zero at x. Consider F ′
0(x, Y, 1). This is a nonzero

polynomial in one variable, so it vanishes at finitely many points y1, . . . , yn.

Claim 14.3. At least one of (x, (yj : 1)) ∈ Z.

Proof. Suppose none of (x, (yj : 1)) ∈ Z, 1 ≤ j ≤ n. Then ∀ j, ∃Gj ∈ I(Z) such that
Gj(x, (yj : 1)) ̸= 0. Now, for every (a1, . . . , an) ∈ kn, we can associate to it a polynomial

n∑
i=1

aiGi(x, Y, 1).

Note that this is a linear combination of polynomials in I(Z), hence itself in I(Z). F ′
0(x, Y, 1)

is also in I(Z). By our inductive hypothesis, all R(F ′, G′) vanish at x for F ′, G′ ∈ I(Z), so
the above sum has a common zero with F ′

0(x, Y, 1). The zeroes of the latter we wrote out
as y1, . . . , yn, so

∑
aiGi(x, Y, 1) vanishes at one of the yj’s. Consequently, the image of the

morphism kn → kn given by

(a1, . . . , an) 7→

(∑
j

ajGj, (x, y1, 1), . . . ,
∑
j

ajGj(x, yn, 1)

)

is contained in the union of the coordinate hyperplanes in kn, as one of the components
must be 0. But kn is irreducible, so its image must be irreducible. This is a contradiction to
the image being contained in the union of hyperplanes unless the image is contained in one
of the coordinate hyperplanes. This is equivalent to saying that all Gj’s vanish at the same
(x, yi, 1), which contradicts our assumption that there is no point (x, (yj : 1)) contained in
Z.
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This tells us that x ∈ pX(Z), which immediately gives us our conclusion for the first
step. Lucky for us, this is the hard part of the proof; the generalizations are not as bad.

For the second step, we still take Y = P1 but we now take X to be arbitrary. We can
reduce this to the case where X is affine, so suppose X ⊆ Am ⊆ Pm. We may cover X with
open affines X =

⋃
Xi, Xi ⊆ Pm. If Z ⊆ X×P1 is closed, then for each i, Zi := Z∩(Xi×P1)

is closed. But then we can invoke Step 1 to get p(Zi) ⊆ Xi ⊆ Pm is closed, so the finite
union p(Z) =

⋃
i p(Zi) ⊆ X is also closed.

Finally, we take both X and Y to be arbitrary. It suffices to take Y = Pm, since we
always have Y ⊆ Pm for some m, and any closed subset of X×Y is closed in X×Pm. From
here, the proof is not super easy, but also not difficult thanks to the blow-up machinery
(wow sounds so violent) we developed last time.

Consider the blow-up P̃n = Blp(Pn). We will take the (lesser-used) projection map

q : P̃n → Pn−1, which we mentioned last time to be a locally trivial P1-bundle. We want to
take advantage of this construction: if the P1-bundle was globally trivial, then we could use
the second step to reach our conclusion by induction. Cover Pn−1 by standard open affines
Ui, 0 ≤ i ≤ n− 1. We have the following commutative diagram:

X × Ui × P1 X × P̃n X × Pn

X × Ui X × Pn−1 X

1X×q 1X×q

pX

1X×π

pX

We can write the pullback of X ×Ui as X × (Ui× P1) in the top left because of an exercise
from last time: q−1(Ui) ∼= Ui × P1 since the projection is a locally trivial P1-bundle.

This gives us all the information we need. If Z ⊆ X ×Pn is closed, it follows that (1X ×
π)−1(Z) is closed. Restricting to X×Ui×P1, the intersection (1X×π)−1(Z)∩ (X×Ui×P1)
is closed. We apply Step 2 to get the projection (1X × q)((1X × π)−1(Z) ∩ (X × Ui × P1))
is closed for all i (we are at the bottom left corner now). The union of all such i is the
bottom center, given by (1X × q)((1X × π)−1(Z)), which is closed. Finally, by our inductive
hypothesis, pX of this is closed, so we conclude.

15 03/25 - Degree of Maps (and Varieties)

15.1 Generically Finite Morphisms

This will help us define degree for a map, which in turn will help us define degree for a
subvariety in projective space.

Definition 15.1 (Generically Finite). A morphism f : X → Y of (quasi-projective)
varieties is called generically finite if ∃ ∅ ̸= U ⊆ Y open such that f−1(y) is finite for
all y ∈ U .

The blow-up map is generically finite! For the open U = Y \ {0}, the map is bijective. But
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we are more interested in the following example:

Example 15.2 (“Main example” for generically finite)

LetX ⊆ Pn be a projective variety, Pn−1 ∼= H ⊆ Pn a hyperplane, and x0 ∈ Pn\(X∪H).
Then, we will define a projection map p : Pn \ {x0} → H where, for x ̸= x0, p(x) is
the intersection of H with the line connecting x0 and x (we will denote the line x0x, so
p(x) = x0x ∩H.

We can pick coordinates such that x0 = (1 : 0 : · · · : 0) and H = (x0 = 0).
x0x is parametrically given by (λ + µx0 : µx1 : · · · : µxn) where λ, µ ∈ k. Thus,
p((x0 : · · · : xn)) = (x1 : · · · : xn). We will prove that this is generically finite below.

Claim 15.3. All of the fibers of p|X are finite.

Proof. Let y ∈ p(X), so f−1(y) ⊆ x0x = P1. This is a closed subset. But note that
x0 /∈ f−1(y), so the pre-image is not all of P1. But any closed strict subset of P1 is finite,
voila.

By Corollary 11.5, since X,H are projective, p(X) is closed, hence a variety in Pn−1. If
p(X) ⊊ pn−1, we can repeat the process on p(X) to eventually get a surjective morphism
with finite fibers f : X → Pm (so f = pxn−m ◦ · · · ◦ px1 ◦ px0 is a composition of these
projections). Even more, we can change coordinates such that the map is the projection
map (x0 : · · · : xn) 7→ (x0 : · · · : xm).

Exercise 15.4. Interpret this as a unique projection from a higher dimensional linear
subspace. (What I mean is, the initial map p is projecting from a point. If we compose
two of these maps, this is equivalent to projecting from a line in Pn. Generalize.)

15.2 Degree of Generically Finite Map

Now we define degree for a generically finite map. The following theorem gives us an
algebraic interpretation of degree:

Theorem 15.5

Let f : X → Y be a dominant, generically finite morphism of varieties. Then, K(Y ) ↪→
K(X) is a finite field extension.

In particular, trdegkK(Y ) = trdegkK(X) (i.e. dimY = dimX).

Aside, related to Jarell’s question in class: if you want a sneak peek on how the dimen-
sions of the fibers behave...
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Proposition 15.6

If f : X → Y is a morphism between two irreducible affine varieties over an algebraically
closed field k, then the function that assigns to each point of X the dimension of the
fiber it belongs to is upper semicontinuous on X.

Remark 15.7. The dominant condition here is nothing to worry about: we can just
consider p as a map from X to p(X).

The degree of the map is now very natural to define.

Definition 15.8 (Degree of map). The degree of the map f : X → Y is the degree of
the field extension [K(X) : K(Y )].

So you can read a birational map from its induced field extension. A birational map is 1-1
on almost all points, which means the two function fields are the same.

We add the following statement to Theorem 15.5.

Theorem 15.9 (Adding on to Theorem 15.5)

If char k = 0, then deg f is the same as #f−1(y) for y ∈ U ⊆ Y non-empty open.

Proof. WLOG we may assume X, Y are affine. (Check this! Left as exercise.) We can also

factor f : X
Γf

↪−→ X × Y p2−→, with X × Y ⊆ An+m, Y ⊆ Am, and p2 being the projection
An+m → Am. We may decompose this into n projections, one variable at a time. Thus,
we may assume X ⊆ Am+1 and Y ⊆ Am, with projection p : Am+1 → Am being the one
removing the first component.

Given our map X → Y , we have a pullback map A(Y )→ A(X) = A(Y )[x0], so K(X) =
K(Y )(x0). We now prove the following:

Claim 15.10. x0 is algebraic over K(Y ).

Proof. Assume by contradiction that x0 is transcendental over K(Y ). Take F ∈ I(X) ⊂
k[x0, . . . , xm]. We may write F = F0(x1, . . . , xm) ·xd0+Fd−1(x1, . . . , xm−1) ·xd−1

0 + . . . . Since
x0 is transcendental, we must have Fi ≡ 0 on Y . But then this means if (x1, . . . , xn) ∈ Y ,
then ∀x0 ∈ k, (x0, x1, . . . , xm) ∈ X, so f−1(y) = A1. But this is a contradiction to the
finiteness of f−1(y), so x0 is algebraic over K(Y ).

It is immediate from here that K(Y ) ⊆ K(X) is an algebraic, and hence finite, extension.

Now we prove the second part of the theorem (written as Theorem 15.9). Assume now
char k = 0. Let F be the minimal polynomial of x0 over K(Y ). (We can assume coefficients
of F are in A(Y ) by clearing denominators.) Denote d := deg(f). Take ∆(x1, . . . , xm) to be
the discriminant of F . Since F is irreducible with coefficients in K(Y ) and char k = 0, we
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have ∆ ̸≡ 0 on Y . This means that (∆ = 0) and (Fd = 0) are proper closed subsets of Y ,
hence every fiber for any y ∈ U = Y \ ((∆ = 0) ∪ (Fd = 0)) has d points. brush this up

Remark 15.11. The same proof works if K(Y ) ↪→ K(X) is a separable extension in
char k = p > 0. (Recall that separable means that f ′ ̸≡ 0 if f is the minimal polynomial
of any x0 ∈ K(X).)

On defining separable extension:

“You should have learned about separable extensions in any field
theory class. If not, that professor should be fired.” -Popa

15.3 Degree of Projective Variety

As one may expect, it uses the definition of degree for a generically finite map.

Definition 15.12 (Degree). Let X ⊆ Pn be a projective variety. Take a surjective
projection map f : X → Pm, m = dimX. This is a generically finite map, so it has a
well-defined degree. We define the degree of X (in Pn) to be deg(X) := deg(f).

This seems to be good, but someone should call Houston because we have a problem. This
definition is dependent on the choice of our projection f ! Or at least, it seems like it for
now. It turns out (thankfully) that the degree of X is actually independent of our choice of
f , but we will assume this for now and prove it later.

Remark 15.13. Although deg(X) doesn’t depend on f , it does depend on the embed-
ding into Pn. For instance, we can embed P1 ↪→ P2 as either a line or a conic, which
gives degrees 1 and 2, respectively.

Remark 15.14. In general, deg(X) is the number of points in the intersection of X
with a general (n −m)-dimensional linear subspace of Pn, which in turn is just equal
to #(X ∩H1 ∩ · · · ∩Hm) where each Hi is a general hyperplane in Pn.

Example 15.15

If X = Z(F ) ⊆ Pn is a hypersurface, then deg(X) = deg(F ). (Whew!) The proof of
this is reminiscent of our proof for Bezout’s Theorem that we did in P2, which we can
just generalize to Pn.
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Example 15.16

Take the conic X = Z(xy − z2) ⊆ P2, and consider the map X → P1 induced by the
projection map P2 99K P1, (x : y : z) 7→ (x : y). If char k ̸= 2, then the fibers consist of
two points except over (0 : 1) and (1 : 0). (You’re finding solutions to z2 = a.) But if
char k = 2, then everything is totally messed up! In this case, z2 = a always has one
unique solution, so all fibers consist of just one point. The failure is due to the fact that
f ′ = 0, so the field extension K(x) ↪→ K(z), x 7→ z2 is inseparable.

16 03/27 - Morphisms of Projective Varieties

Theorem 16.1

Let X, Y ⊆ Pn be quasi-projective varieties. Then,

1. If X ∩ Y ̸= ∅, then every irreducible components of X ∩ Y has dimension ≥
dimX + dimY − n.

2. If X, Y is closed and dimX + dimY ≥ n, then X ∩ Y ̸= ∅.

Proof. Consider the cone construction C0(X) := π−1(X), where π : An+1 \ {0} → Pn.

Exercise 16.2. Prove that the cone is quasi-projective, irreducible if X is irreducible,
and dimC0(X) = dimX + 1.

Then let C(X) = C0(X) ⊆ An+1. In particular, if X is closed, then C(X) is just the
affine cone over X (C(Z) = C0(Z) ∪ {0}). We now prove (1). We have

C0(X ∩ Y ) = C0(X) ∩ C0(Y )

= (C0(X)× C0(Y )) ∩∆A2n+2

=⇒ dim(C0(X) ∩ C0(Y )) ≥ dimC0(X) + dimC0(Y )− (n+ 1)

=⇒ dim(X ∩ Y ) + 1 ≥ (dimX + 1) + (dimY + 1)− (n+ 1)

= dimX + dimY − n+ 1,

as desired. (We subtract (n + 1) in the third line because ∆A2n+2 is carved out by n + 1
linear equations.)

Now we prove (2). The same reasoning as in (1) shows that each component of C(X)∩
C(Y ) has dimension ≥ dimX + dimY − n + 1. By hypothesis, this is ≥ 1. Thus, C(X) ∩
C(Y ) = C(X∩Y ) = C0(X ∩ Y ) has to contain some nonzero points, so C0(X∩Y ) ̸= ∅.

16.1 Dimension of Fibers of Morphism

We now prefer a very important theorem on the dimensions of the fibers of a morphism. We
won’t prove it in class, since the proof is involved and not enlightening, but we will look at
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some of its applications. (Hopefully) Accessible proofs can be found in Harris (Thm 11.12)
and Shafarevich (somewhere idk).

Definition 16.3 (Upper Semicontinuous Function). LetX be a variety, and φ : X → Z
a function. Then, φ is upper semicontinuous if ∀ k ∈ Z, the set {x ∈ X | φ(x) ≥ k}
is closed.

Consequently, if φ is upper semicontinuous, then there exists some open ∅ ≠ U ⊆ X on
which φ attains its minimal value.

This seems like a very odd definition that really comes out of nowhere, but it is significant
because so many things in algebraic geometry turn out to be upper semicontinuous. For
example, the rank of stalks of a coherent sheaf on X is given by such a function.

Definition 16.4 (Dimension w.r.t point). If Z is an algebraic set containing x, then
dimx Z is the maximal dimension among components passing through x.

We now can state our theorem.

Theorem 16.5

Let X be a variety and f : X → Pn a morphism. For each x ∈ X, denote Xx :=
f−1(f(x)). Then, the function φ : X → N, φ(x) = dimxXx is upper semicontinuous.
Moreover, dimX = dim f(X) + φ0, where φ0 := minx∈X φ(x).

Remark 16.6. This is really a statement about any f : X → Y between quasi-
projective varieties.

Corollary 16.7

Let f : X → Pn be a morphism, X quasi-projective. Denote Y = f(X). Then,

1. ∀ y ∈ f(X), every irreducible component of f−1(y) has dimension ≥ dimX −
dimY .

2. ∃ ∅ ̸= U ⊆ Y oepn such that ∀ y ∈ U , dim f−1(y) = dimX − dimY .

Remark 16.8. There is a very surprising statement embedded in the second part of
the theorem. Y is the closure of the image, but we know very little about the image of
a morphism! At best, we know that it is a constructible set. Then why must there exist
an open in Y ? This is actually not necessarily true a priori, but the above corollary
guarantees this fact. We write it explicitly below.
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Corollary 16.9

The image of a dominant morphism of quasi-projective varieties contains a nonempty
open set.

Corollary 16.10

Let f : X → Y be a morphism of quasi-projective varieties. Then, the image of every
constructible set is constructible.

This generalizes (and hence implies) Chevalley’s Theorem, at least the version that we stated
without the information about the dimension of the fibers. (Theorem 11.18)

Proof. We induct on dimY . Note that we can always decompose X into finitely many
irreducibles, and if the images of each irreducible is constructible, then the finite union of
the images is also constructible. Thus, we may assume X is irreducible and f dominant.

By Corollary 16.9 above, ∃ ∅ ̸= U ⊆ f(X). Denote Z = Y \ U ⊊ Y closed. We have
dimZ < dimY . We can write

f(X) = U ∪ f(f−1(Z)).

f(f−1(Z)) is constructible by induction, and U is open, so their union is constructible. The
conclusion follows.

We now prove the first corollary (16.7).

Proof. We will prove when f : X → Y is a morphism of projective varieties. (Because it is
between projective varieties, it is surjective.) check this For r ∈ N, denote

X(r) := {x ∈ X | dimxXx ≥ r}.

Recall Xx = f−1(f(x)). Fix y ∈ Y , and let X ′ be an irreducible component in f−1(y).
Fix x ∈ X ′ not in any other component. We then have

dimX ′ = dimxXx ≥ φ0 = dimX − dimY,

where the last equality follows from Theorem 16.5. This gives us (1).

For (2), we wish to show ∀Z ⊆ φ−1(φ0 + 1) irreducible component, f(Z) ⊊ Y . Let
x ∈ Z but not in some other component of φ−1(φ0 + 1). Then, there exists an irreducible
component X ′ of Xx passing through x such that dimX ′ ≥ φ0 + 1. Thus, by our choice
of x, we get X ′ ⊆ Z ⊊ X. Then, for f |Z : Z → f(Z), the function φ has minimum value
≥ φ0 + 1. Applying the theorem for f |Z , we get

dim f(Z) ≤ dimZ − φ0 − 1 ≤ dimX − φ0 − 2 = dimY − 2.

This completes the proof. go over this
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Remark 16.11. This highlights the fact that many things we’re dealing with are pa-
rameterized by Zariski closed subsets. explain more

“We can apply induction to anything that’s bad in life.” -Popa

16.2 Grassmannians

This is a fundamental construction that we’ll use frequently moving forward. We first define
the Grassmannian as a set. Define

G(k, n) := {k − dim linear subspaces of Kn}.

Let V be a K-vector space of dimension n. Then, we may define

G(k, V ) = {k − dim linear subspaces of V }.

Note that these two coincide once we choose a basis for V . We can also consider subspaces
in Pn; denote

G(k, n) = G(k − 1, n− 1) = {(k − 1)− dim linear subspaces of Pn−1},

and similarly for G(k, V ) = G(k − 1,P(V )).

Fact 16.12. G(k, n) is a projective variety of dimension k(n− k).

Example 16.13

Observe G(1, n) ∼= Pn−1.

Understanding the Grassmannian as a projective variety is not entirely clear a priori. This
is achieved through the Plücker embedding

G(k, V ) ↪→ P(
∧k

V ).

So the key to understanding Grassmannians is through exterior algebra. Let us define the
Plücker embedding.

Suppose W ⊆ V is a k-dimensional vector subspace, choose basis ⟨v1, . . . , vk⟩. Then,
v1 ∧ · · · ∧ vk ∈

∧k V , so [v1 ∧ · · · ∧ vk] ∈ P(
∧k V ). (finish this)

h

Hahn Lheem Page 70



Math 137: Algebraic Geometry 04/03 - Exterior Algebra

17 04/03 - Exterior Algebra

Exterior algebra is perhaps the most righteous way to learn about Grassmannians, and it
is an important topic that is often overlooked in algebra classes (I speak from personal
experience).

Author’s Note 17.1. I wasn’t able to make it to class today, so these are based off of
Eliot’s notes. Thanks Eliot!

Assume char k ̸= 2. Let V be an n-dimensional vector space over k, and choose some
basis e1, . . . , en of V . The exterior algebra of V ,denoted E, is defined in the following way:

E =
∧

V :=
∧0

V ⊕
∧1

V ⊕ · · · ⊕
∧n

V,

where ∧k
V =

k⊗
i=1

V/(v1 ⊗ · · · ⊗ vk − sgn(σ)vσ(1) ⊗ · · · ⊗ vσ(k)).

In other words,
∧
V =

⊗
V/ ⟨x⊗ y + y ⊗ x⟩, where ⟨x⊗ y + y ⊗ x⟩ denotes the relations

generated by x⊗ y + y ⊗ x for all x, y ∈ V . Therefore, for all x, y ∈ V , x ∧ y = −y ∧ x by
construction.

Note that E is a graded ring by constructino, with ring structure given by ∧ : E×E → E
taking (v, w) 7→ v∧w. Because we assumed char k ̸= 2, we have x∧x = −x∧x =⇒ x∧x = 0
for all x ∈ E.

The exterior algebra E =
∧
V satisfies the following properties:

1. For all λ1, λ2 ∈ k and v1, v2, w ∈ E,

(λ1v1 + λ2v2) ∧ w = λ1(v1 ∧ w) + λ2(v2 ∧ w),

2. v1 ∧ v2 = −v2 ∧ v1 (we call the operation skew-commutative),

3. ∧ is associative.

Let’s work a little more tangibly with these wedge products. An element in
∧k V is expressed

as ∑
1≤i1<···<ik≤n

ai1,...,ikei1 ∧ · · · ∧ eik .

Note that ai1,...,ik ∈ k and that the ei1 ∧ · · · ∧ eik are linearly independent over k. The set

of all {ei1 ∧ · · · ∧ eik | 1 ≤ i1 < · · · < ik ≤ n} forms a basis for
∧k V , so dim

∧k V =
(
n
k

)
. In

particular,
∧n V ∼= ke1 ∧ · · · ∧ en, since dim

∧n V = 1.
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17.1 Exterior Product Properties

We continue with understanding the exterior product. Suppose φ : V → V is a linear
transformation. If e1, . . . , en is a basis for V , then φ can be identified with a matrix A ∈
Mn(k). This induces a map

∧k φ :
∧k V →

∧k V , and in particular a map
∧n φ :

∧n V ∼=
k →

∧n V ∼= k. (To clarify, there are two k’s here: one for the field over which V is a vector
space, and one for the power of the exterior algebra.)

Exercise 17.2.
∧n φ corresponds to multiplication by det(A).

As a consequence of the above,
∧n φ = 0 tells us that rankφ < n; these are equivalent

statements.

Corollary 17.3

Suppose v1, . . . , vk are linearly independent, and suppose v′1, . . . , v
′
k ∈ W := ⟨v1, . . . , vk⟩.

Write v′i =
∑

j aijvj. Then,

v′1 ∧ · · · ∧ v′k = det(aij)i,jv1 ∧ · · · ∧ vk.

Similar to how in tensor algebra, we often focus our attention on pure tensors (as any
element is expressible as a sum of pure tensors), we want to investigate “pure” elements in
our exterior algebra. We define two types of decompositions:

Definition 17.4 (Completely/partially decomposable). An element ω ∈
∧k V is com-

pletely decomposable (a “pure wedge”) if ω = v1 ∧ · · · ∧ vk for v1, . . . , vk ∈ V .
ω ∈

∧k V is partially decomposable if there exists v ∈ V and u ∈
∧k−1 V such that

ω = v ∧ u.

Proposition 17.5

Let ω ∈
∧k V . Then,

1. If ω is partially decomposable, then ω ∧ ω = 0,

2. If ω is partially decomposable, then the linear transformation ϕω : V →
∧k+1 V

taking v 7→ v ∧ w has nonzero kernel,

3. If v1, . . . , vm forms a basis for kerϕω, then ω = v1∧· · ·∧vm∧η for some η ∈
∧k−m V ,

4. ω is completely decomposable iff dimkerϕω = k.

Proof. Part (1): Write ω = v ∧ u for some v ∈ V , u ∈
∧k−1 V . Then, ω ∧ ω = (v ∧ u) ∧

(v ∧ u) = −(v ∧ v) ∧ (u ∧ u) = 0.

Both (2) and (4) are special cases of (3) (these implications are left as an exercise), so
it remains to prove (3).
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Part (3): Complete v1, . . . , vm to a basis v1, . . . , vm, vm+1, . . . , vn of V . Write

ω =
∑

1≤i1<···<ik≤n

ai1···ikvi1 ∧ · · · ∧ vik

and consider vj ∧ ω. Using properties of the wedge product, one can see that

vj ∧ ω =
∑

1≤i1<···<ik≤n

ai1···ikvj ∧ vi1 ∧ · · · ∧ vik .

vj ∧ vi1 ∧ · · · ∧ vik = 0 if j = ir for some r, otherwise it is a basis vector for
∧k+1 V . Hence,

vj ∧ ω = 0 iff ai1...ik = 0 for every {i1, . . . , ik} ̸∋ j. Because v1, . . . , vm are a basis for kerϕω,
we know v1∧ω = · · · = vm∧ω = 0, implying that ai1...ik = 0 if {1, . . . ,m} ̸⊂ {i1, . . . , ik}.

17.2 Applications to Grassmannians

For an n-dimensional vector space V over k, recall that G(k, V ) denotes the set of k-
dimensional linear subspaces of V . Alternatively, G(k− 1,P(V )) denotes the set of (k− 1)-
planes in P(V ).

Lemma 17.6

(Homework) There exists an injection ι : G(k, V ) ↪→ P(
∧k V ). GivenW = ⟨v1, . . . , vk⟩ ∈

G(k, V ), this map takes W 7→ [v1 ∧ · · · ∧ vk] ∈ P(
∧k V ) ∼= P(

n
k)−1.

Proof. The lemma follows from showing that the map is well-defined and injective. The
details should be done in the corresponding problem on the homework.

The reason why we introduced exterior algebras is for this: the above embedding realizes
the Grassmannian as a projective subvariety of P(

∧k V ).

Lemma 17.7

Moreover, ι realizes G(k, V ) as a closed subset in P(
∧k V ). We call ι the Plücker

embedding.

Proof. By Proposition 17.5, [ω] ∈ Im(ι) if and only if ϕω : V →
∧k+1 V has rank ≤ (n− k).

But this is true iff all the (n−k+1)× (n−k+1) minors of ϕω are 0. This gives polynomial
equations carving Im(ι) ⊂ P(

∧k V ).

More specifically, fix a basis e1, . . . , en ∈ V . The coordinates on P(
∧k V ) are [· · · : xi1...ik :

. . . ]1≤i1<···<ik≤n. Write ω ∈
∧k V as ω = v1 ∧ · · · ∧ vk. Then, kerϕω = ⟨v1, . . . , vk⟩, where

vi =
∑

j xijej. Now, recall that ϕω takes e1 7→ e1 ∧ ω. We have

e1 ∧ ω = e1 ∧ v1 ∧ · · · ∧ vk
= e1 ∧

(∑
x1jej

)
∧ · · · ∧

(∑
xkjej

)
=
∑

x1i1 · · ·xkike1 ∧ ei1 ∧ · · · ∧ eik .
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Similar calculations can be performed for the other ei’s. Each xI = x1i1 · · ·xkik corresponds
to ei1 ∧ · · · ∧ eik . The minors of ϕω give the equations for the Grassmannian in the xI .

Let’s put this into practice.

Example 17.8

Suppose k = 2. Then, the embedding we are working with looks like ι : G(2, V ) ↪→
P(
∧2 V ). We claim that Im(ι) is given by the equations ω ∧ω = 0. (This is a quadratic

relation in the xI ’s.) These are called the Plücker relations. The proof is left as an
exercise for the reader.

Example 17.9 (G(2, 4))

The first nontrivial Grassmannian is for (k, n) = (2, 4). We have G(2, 4) = G(1, 3) ↪→
P(
∧2 k4) = P(

4
2)−1 = P5. (Recall G(2, 3) ∼= G(1, 3) ∼= P2.) The dimension of G(k, n) is

k(n− k), so dimG(2, 4) = 4. Therefore, G(2, 4) is a hypersurface in P5, i.e. a quadric.
Let e1, e2, e3, e4 be a basis for k4. We have that

ω =
∑

1≤i<j≤4

xijei ∧ ej = x12(e1 ∧ e2) + · · ·+ x34(e3 ∧ e4),

so x12, . . . , x34 are our coordinates on P5. We also see that ω∧ω = 0 iff x12x34−x13x24+
x14x23 = 0. This is the equation of G(2, 4) in P5.

Remark 17.10. Our observations here are not especially nice. In fact, every G(k, n) is
defined by quadrics. (For a reference, look at the section on Grassmannians in Harris’s
book.)

18 04/05 - Schubert Cycles

18.1 Defining Schubert Cycles

[insert stuff here cuz i was late] (schubert)

So, if we fix a basis w1, . . . , wm for L and compete it to a basis w1, . . . , wm, wm+1, . . . of
V , we can look at

ω ∧ wi1 ∧ · · · ∧ wim−ℓ+1
= 0

for 1 ≤ i1 < · · · < im−ℓ+1 ≤ m. Expand ω in terms of the basis; then, these wedge products
are equations in the coefficients of ω, and in particular these give the equations for

∑
ℓ(L).
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Consider L ⊆ V where m = dimL = n− k, and take ℓ = 1. Then, we have∑
1

(L) := {W ∈ G(k, V ) | dim(W ∩ L≥1}

= {[ω] ∈ P(
∧k

V ) | ω ∧ v1 ∧ · · · ∧ vn−k = 0∀ v1, . . . , vn−k ∈ L}.

Claim 18.1.
∑

1(L) = G(k, V ) ∩H for a hyperplane H.

Proof. Let v1, . . . , vn−k be a basis for L, and extend it by vn−k+1, . . . , vn to a basis for V .
Denote

η = v1 ∧ · · · ∧ vn−k ∈
∧n−k

V

Hη = {[ω] ∈ P(
∧k

V ) | ω ∧ η = 0}.

Now for the punchline.

Exercise 18.2.
∑

1(L) = {[ω] ∈ G(k, V ) | ω ∧ η = 0}; in other words,
∑

1(L) =
G(k, V ) ∩Hη.

It thus suffices to prove that Hη is a hyperplane. We can express ω as

ω =
∑

1≤i1<···<ik≤n

xi1···ikvi1 ∧ · · · ∧ vik ,

as the collection of all vi1 ∧ · · · ∧ vik forms a basis for
∧k V . Then, ω∧ η = 0 is equivalent to∑

1≤i1<···<ik≤n

xi1···ikvi1 ∧ · · · ∧ vik ∧ v1 ∧ · · · ∧ vn−k︸ ︷︷ ︸
η

= 0.

But if any ir ∈ {1, . . . , n− k}, then the product vanishes. Thus, the only possibly nonzero
term in the sum is when {i1, . . . , ik} = {n − k + 1, . . . , n}. This wedge product may
be nonzero, so we require the coefficient to be 0. Thus, the equation of Hη is given by
xn−k+1,...,n = 0, so it is a hyperplane.

18.2 Properties of the Grassmannian

Our motivation for introducing these Schubert cycles is to give us new information about
Grassmannians. We glean the rewards now.

Corollary 18.3

G(k, V ) \
∑

1(L) is affine.

Proof. This follows from the observation that P(
∧k V ) \Hη = A(

n
k)−1 is affine.

We can do even better by specifying the dimension.
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Proposition 18.4

G(k, V ) \
∑

1(L)
∼= Ak(n−k).

This is incredible, because this tells us many things about the Grassmannians:

• G(k, V ) is irreducible,

• dimG(k, V ) = k(n− k),

• G(k, V ) is rational,

• G(k, V ) is smooth.

These show that Grassmannians are really a very special kind of projective variety, one
that algebraic geometers love to work with due to all of the properties it satisfies. Our life
is hinging on Proposition 18.4, though, so let’s prove it.

Proof. Observe G(k, V ) \
∑

1(L) = {W ∈ G(k, V ) | W ∩ L = {0}}. Fix bases v1, . . . , vn−k

for L and B = {v1, . . . , vn−k, vn−k+1, . . . , vn} for V . For any W ∈ G(k, V ), we can write
W = ⟨w1, . . . , wk⟩. Express each wj in terms of our basis B. Then, via Gaussian elimination,
the matrix for {w1, . . . , wk} up to coordinate change looks like a1,1 · · · a1,n−k 1

...
. . .

...
. . .

ak,1 · · · ak,n−k . 1


where the empty spaces on the right are all 0 and the left is just some k × (n − k) matrix
(aij). This gives a correspondence

W → A ∈Mk,n−k
∼= Ak(n−k).

Exercise 18.5. Check that the above is in fact a bijection.

The finish line is in sight now. We have

G(k, V ) \
∑
1

(L) = {W | W ⊕ L = V } ∼= Homk(V/L, L) ∼= Ak(n−k),

as desired.

Hahn Lheem Page 76



Math 137: Algebraic Geometry 04/05 - Schubert Cycles

18.3 Incidence Correspondences and Dimension Calculations

A good reference for incidence correspondence is Harris’s book, for those who would like to
read more.

Let dimL = m. Recall
∑

ℓ(L) = {W ∈ G(k, V ) | dim(W ∩ L) ≥ ℓ}. Define

L = {(U,W ) | U ⊆ W} ⊆ G(ℓ, L)×G(k, V ).

We have projection maps p1 : L → G(ℓ, L) and p2 : L → G(k, V ). Note that, by construc-
tion, Im p2 =

∑
ℓ(L). We see that p1 is surjective and p−1

1 (U) = G(k − ℓ, V/U) (check this)
which is irreducible of dimension (k − ℓ)(n− k).

Exercise 18.6. (Homework) If f : X → Y is surjective, Y is irreducible, and the
fibers are all irreducible of the same dimension d, then X is irreducible. (Additionally,
dimX = dimY + d.)

Invoking this, we get that L is an irreducible closed subset in G(ℓ, L) × G(k, V ) (hence a
projective variety) of dimension

dimL = dimG(ℓ, L) + dim p−1
1 (U)

= ℓ(m− ℓ) + (k − ℓ)(n− k).

We can relate this back to our Schubert cycles: we have Im p2 =
∑

ℓ(L), so
∑

ℓ(L) is
irreducible as well.

We still have some work to do to determine the dimension of this Schubert cycle, though.
This requires looking at the dimensions the fibers of our projections. Given any W ∈
G(k, V ), the only possible subspace in the preimage is p−1

2 (W ) is W ∩ L = U . (check).

Theorem 18.7

dimZ = dim p2(Z) + dim p−1
2 (W ).

p2 is birational, so we have dim
∑

ℓ(L) = dimZ = ℓ(m−ℓ)+(k−ℓ)(n−k). For the specific
case m = n−k and ℓ = 1, then we get the identity (n−k−1)+(k−1)(n−k) = k(n−k)−1!
Obviously you could verify this yourself by expanding, but it’s cool that algebraic geometry
produces arithmetic equations like this.

Example 18.8

Consider G(2, 4) ⊆ P5; this is a quadric hypersurface. We can associate this to G(1, 3),
the lines in P3. Consider Q = ℓ | ℓ ∩ ℓ1 ̸= ∅, ℓ ∩ ℓ2 ̸= ∅} ⊆ G(1, 3), where ℓ1, ℓ2 are two
fixed lines in P3. We have two cases depending on if the lines intersect.

Suppose ℓ1 ∩ ℓ2 = ∅, i.e. they are skew lines. The line ℓ1 ⊆ P3 corresponds to a
plane L1 ⊆ k4, and under this correspondence we can write {ℓ | ℓ ∩ ℓ1 ̸= ∅} =

∑
1(L1).

Likewise, we can construct
∑

2(L2). By definition, Q =
∑

1(L1) ∩
∑

2(L2) = G(2, 4) ∩
H1 ∩H2 ⊆ P5.
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What is going on here? We start with G(2, 4), a quadric in P5. We cut it with a
hyperplane, so it is a quadric in P4, and cutting it by another hyperplane identifies it
as a quadric in P3. But stepping back, any line intersecting ℓ1 and ℓ2 is determined by
choosing a point on ℓ1 and ℓ2, respectively. Noting ℓ1, ℓ2 ∼= P1, this gives us a new proof
that Q ∼= P1 × P1. Neat!

Exercise 18.9. Consider the case where ℓ1 ∩ ℓ2 ̸= ∅ next. Identify this scenario with
an degenerate version of the quadric, and convince yourself that this makes sense.

19 04/17 - Tangent Cone

Remark 19.1. (1) Think of Taylor expansions as trying to “localize” X at x. (2)
TCpX ⊆ TpX, and TpX is defined by terms f1, ∀ f ∈ I(X).

Example 19.2

Missed the first one, but

1. Let X = (y2 = x3 + x2) ⊆ A2. Then, TC0X = (y2 = x2) ⊆ T0X = A2.

2. Let X = (y2 = x3) ⊆ A2. Then, TC0X = (y2 = 0) ⊆ T0X = A2 is the double
line.

We have a really nice geometric interpretation of the projective space of TCxX: PTCxX
is the exceptional divisor of the blow-up of X at x.

Example 19.3

Let C ⊆ A2, and write f(x0, x1) =
∑
aijx

i
0x

j
1 = a00 + a10x0 + a01x1 + . . . . Suppose

a00 = 0, i.e. 0 ∈ C. The tangent line at 0 is given by a10x0 + a01x1 if (a10, a01 ̸= (0, 0).

Let the coordinates on P1 be (y0 : y1). By direct calculation, the proper transform C̃ of
C is given by

a10y0 + a01y1 + a11y0x1 + a20x0y0 + a02x1y1 + · · · = 0.

Over the origin, (x0, x1) = (0, 0), in which we get our tangent line a10y0 + a01y1 = 0.

Exercise 19.4. (Homework) Let P = {0} ∈ X ⊆ An. Consider the blow-up π : X̃ →
X; note X̃ ⊆ Bl0(An) and X ⊆ An. Then, the exceptional divisor E ≃ PTC0X.
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Example 19.5

Let X = (x2 + y2 + z2 = 0) ⊆ A3. (We could replace 2 with any m; the m = 2 case is
called the quadric cone.)

uh oh here come diagrams i can’t draw, but you start with a cone X with vertex at
0. The preimage of X under µ is a shape resembling a cylinder (?) as the projectivizied
tangent cone, and the cross-section along the middle is P2 = Exc(µ). We have f = f2 =
f in, TC0(X) = Z(f in) = Z(f), and PTC0(X) is the smooth conic in P2.

There are a lot of instances where properties of our variety are dictated by their pro-
jectivized tangent cone. For example, a singularity of a variety is called ordinary if the
projectivized tangent cone with respect to that singularity is smooth.

We have some corollaries of the homework exercise listed above.

Corollary 19.6

dimTCxX = dimxX.

Note that dimxX = dimX if X is irreducible by definition.

Proof. dim X̃ = dimX = dimE + 1 = dimPTCxX + 1 = dimTCxX.

Corollary 19.7

Let X be irreducible. Then, x ∈ X is a smooth point iff TCxX = TxX.

19.1 Intrinsic Interpretation

Let X be a variety and x ∈ X. We have the maximal ideal mx ⊆ OX,x. We can take the
mx-adic filtration

OX,x ⊇ mx ⊇ m2
x ⊇ m3

x ⊇ . . .

Remark 19.8. Because Popa asked this in class, I’ll put it here:
⋂

k∈N m
k
x = 0.

We can associate this with the graded ring R = gr(OX,x) =
⊕∞

i=0m
i
x/m

i+1
x . Denote

Ri = mi
x/m

i+1
x , so R0 = k and R1 = T ∗

xX. We see that R is generated by R1 as a k-algebra.

Exercise 19.9. (Also homework) If X ⊆ An is affine (and x = 0), the mapping

k[X1, . . . , Xn]/I(X)in → R sending Xi → X̂i (X̂i is the image of Xi in mx/m
2
x) is a

k-algebra isomorphism.

Because of this result, we can say TCxX has affine coordinate ring R.
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Let’s take a step back and appreciate these abstract constructions a little more. We
start with the quotient mx/m

2
x. Letting k = OX,x/mx, we see that this is a k-vector space,

isomorphic to the dual (TxX)∗. We can form the symmetric algebra Symk(mx/m
2
x) (recall

Symk V = V ⊗k/(x⊗ y − y ⊗ x)). In general, Sym• V =
⊕

i≥0 Sym
k V is a polynomial ring;

explicitly, if we fix a basis x1, . . . , xn of V , then Sym• V ≃ k[x1, . . . , xn]. (Explanation: the
basis elements have no relation with each other except that they commute, which is exactly
the polynomial ring.)

But we can easily realize k[x1, . . . , xn] as the set of functions on An. Considering Sym• V ∗,
we see that it is the algebra generated by linear functionals, aka it is the set of functions on
V . We will apply this to our tangent space situation.

One can find a natural projection map Symk(mx/m
2
x) ↠ mk

x/m
k+1
x . (Check this! Exer-

cise.) This gives us a surjection

A = Sym•(mx/m
2
x) =

⊕
i≥0

Symi(mx/m
2
x) ↠

⊕
i≥0

mi
x/m

i+1
x = R.

The thing on the right is, by the homework exercise, the affine coordinate ring of the tangent
cone. The left is the coordinate algebra of TxX = (mx/m

2
x)

∗. This is thus a surjection on
the coordinate rings, which pulls back to an inclusion of projective varieties TCxX ⊆ TxX.
This is quite powerful because we never mention here any embedding of X into an ambient
(affine) space; we only rely on the germ of functions, from which we can proceed with purely
algebraic methods.

20 04/19 - Hilbert Polynomials

Recorded lecture since Popa was away; I will fill in this later.

21 04/24 - More on Hilbert Polynomials

Here we recall some important definitions. Let X ⊆ Pn be an algebraic set. Then, I(X) is
a homogeneous radical ideal in k[x0, . . . , xn]. This gives us a graded ring

S(X) = k[x0, . . . , xn]/I(X) =
⊕
d≥0

S(X)d,

where each degree-d part S(X)d is a finite dimensional vector space over k. (Sanity check:
verify it’s finite dimensional by finding a spanning list.)

We use this to define a Hilbert function.

Definition 21.1 (Hilbert Function). The Hilbert function of X (in Pn) is a map
hX : N→ N such that hX(d) = dimk S(X)d.
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Remark 21.2. We can define a Hilbert polynomial for any homogeneous (not neces-
sarily radical) ideal I ⊆ k[x0, . . . , xn]. In this case, we can identify I = I(X) for some
projective scheme X. In this setting, we have I(X∩Y ) = I(X)+I(Y ). This setup works
even more generally for any finitely generated graded moduleM over S := k[x0, . . . , xn].

Example 21.3 (Hilbert functions)

Start simple. Let X = Pn, then S(X) = k[x0, . . . , xn], where S(X)d are the homo-
geneous polynomials of degree d. We have hX(d) =

(
n+d
n

)
, which we can treat as a

polynomial in d of degree n with leading coefficient 1/n!.

Consider another simple case in the opposite end of the spectrum. Let X = {(1 :
0), (0 : 1)} ⊆ P1. Then, I(X) = (X0X1), so the basis of S(X)d is either just 1 for d = 0
or {Xd

0 , X
d
1} for d ≥ 1. This gives the function hX(d) = 1 when d = 0 or 2 otherwise.

Because we are expanding our attention to include schemes (i.e. when I(X) is not
radical), let’s consider the “double point” scheme X ⊆ P1. (As a set, you’re kinda
counting the point (0 : 1) twice, but it’s easier to talk about its vanishing ideal.) We
have I(X) = (X2

0 ), so the basis for S(X)d is 1 if d = 0 and {X0, X
d−1
1 , Xd

1} otherwise.
This means the Hilbert function is the same as above.

Finally, let X = {(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)} ⊆ P2. (We could more generally
take any three non-collinear points.) Then, I(X) = (X0X1, X0X2, X1X2). We can
construct a basis for S(X)d: 1 for d = 0, and {Xd

0 , X
d
1 , X

d
2} otherwise. Then, hX(d) = 1

for d = 0 and 3 otherwise.

Exercise 21.4. (Going off of the last example above) Show that if X is a set of three
collinear points in P2, then

hX(d) =


1 d = 0

2 d = 1

3 d ≥ 2

.

We see a pattern here. For all of these cases where X is finite, the Hilbert function
stabilizes quickly to a value which coincides with the number of points in our scheme. We
now formalize this:

Lemma 21.5

Let X ⊆ Pn be a 0-dimensional subset (“subscheme”). Then,

1. X is an affine algebraic set.

2. Let R := A(X) be the affine coordinate ring. (Affine from above.) R is a finite
dimensional vector space over k. (We call dimk R as the length of X.)

3. hX(d) = dimk R for d >> 0.
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Proof. (1) We can always find a hyperplane H ⊂ Pn such that H ∩X − ∅. (The set of all
hyperplanes passing through a point is closed in the set of all hyperplanes, so the set of all
planes passing through any point in X is a finite union of closed subsets, so it is closed.)
Then, X ⊆ Pn \H = An, woohoo.

(2) This was a homework exercise,2 so we move on, hahahaha.

(3) We may assume that H in (1) is H = (X0 = 0). Let f1, . . . , fℓ be a k-basis of R,
with deg fi = di. Let d ≥ maxj{dj}, and consider the k-linear maps

α : S(X)d → R

F 7→ f(x1, . . . , xn) = F (1, x1, . . . , xn).

β : R→ S(X)d

f 7→ f
hom ·Xd−deg f

0 .

It is straightforward to check that α and β are inverses of each other. This gives us an
isomorphism R ∼= S(X)d over k, and the conclusion follows.

Now we present the main result on Hilbert polynomials, namely that they exist: any
Hilbert function is actually a polynomial.

Theorem 21.6

Let X ⊆ Pn be an m-dimensional algebraic set (or projective subscheme). Then, there
exists a unique polynomial χX ∈ Q[T ] such that hX(d) = χX(d) for d >> 0. Moreover,

1. degχX = m,

2. the leading coefficient of χX is 1/m! ·N for some positive itneger N .

Definition 21.7 (Hilbert Polynomial). We call χX the Hilbert polynomial of X ⊆
Pn.

Proof. Induct on m. This takes advantage of the fact that we proved this for m = 0 in the
previous lemma; our base case is complete.

Choose a general hyperplane such that no component of X is contained in H. By some
change of coordinates, we may assume H = (X0 = 0). we now have a short exact sequence
of k[X0, . . . , Xn]-modules:

0→ k[X0, . . . , Xn]/I(X)
X0−→ k[X1, . . . , Xn]/I(X)→ k[X0, . . . , Xn]/(I(X) + (X0))→ 0.

Note that I(X)+(X0) = I(X ∩H). The first map X0 is injective, otherwise there exists
homogeneous F such that X0 ◦ F ∈ I(X), in which case X ⊆ (X ∩ Z(F )) ∪ (X ∩H). But
since F /∈ I(X), we get X ⊆ X ∩ Z(F ), a contradiction.

2Problem 5 on Problem Set 3
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This exact sequence is nice because now we can take dimensions and relate the to our
Hilbert polynomials:

hX(d) = hX(d− 1) + hX∩H(d).

By induction, hX∩H(d) is a polynomial of degree (m − 1) (for d >> 0), with leading
coefficient 1

(m−1)!
·N for some positive integer N .

We can write hX∩H(d) =
∑m−1

i=0 ci
(
d
i

)
, where ci ∈ Q, cm−1 ∈ N∗. (In fact, if we give

a more full proof of this, then we can obtain ci ∈ Z and not just in Q, but we do not
need this distinction in our proof. See Hartshorne Proposition 7.3 for a reference.) A very
brief argument: obtain the ci values by induction downwards. cm−1 is determined; we can
determine cm−2 by looking at the degree-(m− 2) part, where the coefficient is just in terms
of cm−1 and cm−2.

Now, we present the final stamp.

Claim 21.8. For d >> 0,

hX(d) = c+
m−1∑
i=0

ci

(
d+ 1

i+ 1

)
for some constant c.

This finishes our proof, so we just need to prove the claim. As intuition for why this
works, we have the nice identity

(
d+1
i+1

)
=
(

d
i+1

)
+
(
d
i

)
. We want to make use of the equation

of Hilbert polynomials we obtained from our short exact sequence. Let f(d) = hX(d) and
P (d) =

∑m−1
i=0 ci

(
d+1
i+1

)
.

Define ∆f(d) = f(d) − f(d − 1), and likewise for ∆P (d). The equation from the short
exact sequence tells us ∆hX(d) = hX∩H(d). By the identity on binomial coefficients, we
have ∆P (d) =

∑m−1
i=0 ci

(
d
i

)
, which is our expression for hX∩H(d). Thus, ∆(f − P ) = 0 for

d >> 0, which means f − P = c constant, and we conclude.

Definition 21.9 (Degree of algebraic set). LetX ⊆ Pn be an algebraic set (subscheme).
The degree of X is the product of (dimX)! and the leading coefficient of χX(d).

Example 21.10 (Degrees)

Since χPn = 1
n!
dn + . . . , we have deg(Pn) = 1. If dimX = 0, then χX(d) = length ·d0,

so deg(X) = length(X).

Another example, but we need longer justification for this.

Claim 21.11. If X = Z(F ) ⊆ Pn is a hypersurface, then degX = degF .
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Proof. We have a short exact sequence 0 → S
F−→ S → S/(F ) → 0. (S := k[X0, . . . , Xn])

This gives us

hX(d) = hPn(d)− hPn(d− degF )

=

(
d+ n

n

)
−
(
d− degF + n

n

)
=

(d+ n) · · · (d+ 1)

n!
− (d− degF + n) · · · (d− degF + 1)

n!

=
degF

(n− 1)!
· dn−1 + lower order terms,

and the end is clear.

But wait, we already define degree before! (Definition 15.12) Luckily, these two notions
of degree coincide; this will be a final exam problem.

22 04/26 - Bezout’s Theorem

Start with the setup we had from last time. Let X ⊆ Pn. This gives a homogeneous
I(X) ⊆ k[X0, . . . , Xn], which in turn gives us a Hilbert function hX , which is actually a
polynomial χX of the form

χX(d) =
degX

(dimX)!
· ddimX + lower order terms.

From here, the genus of a curve arises in a very natural way. For a projective curve
C ⊆ Pn, we have χ(OC(d)) = (degC) · d− r for some constant r. We set g = r + 1 as the
genus of C.

Definition 22.1. The arithmetic genus of any projective variety X ⊆ Pn is

pa(X) = (−1)dimX(χX(0)− 1).

Remark 22.2. This is independent of the embedding in Pn, so this is an invariant
intrinsic to the variety, which is a powerful thing.

Proposition 22.3

LetX, Y ⊆ Pn be varieties of dimensionm such that dimX∩Y < m. Then, degX∪Y =
degX + deg Y .

An example of this scenario to keep in mind is if two irreducible components intersect,
then their intersection will have smaller intersection, so you can just add degrees freely
without worrying about the intersection. For instance, two curves may intersect at some
points, but there are just finitely many, so its dimension is 0 and we can add degrees.
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Proof. Recall I(X ∩ Y ) = I(X) + I(Y ) and I(X ∪ Y ) = I(X) ∩ I(Y ). In general, for any
ideals I1, I2 ⊂ R, we always have a short exact sequence

0→ R/I1 ∩ I2 → R/I1 ⊕R/I2 → R/I1 + I2 → 0,

where the first nontrivial map is f 7→ (f, f) and the second is (f, g) 7→ f − g. This gives us
the short exact sequence

0→ S/I(X) ∩ I(Y )→ S/I(X)⊕ S/I(Y )→ S/I(X) + I(Y )→ 0,

where S = k[X0, . . . , Xn]. Taking dimensions, we have

hX(d) + hY (d) = hX∪Y (d) + hX∩Y (d).

Looking at the leading terms (in particular, the coefficient of dm), we get

degX

m!
+

deg Y

m!
=

deg(X ∪ Y )

m!
+ 0,

which gives us the desired result.

Note that this is the way we want to proceed with a lot of these Hilbert polynomial
arguments: find a short exact sequence, then take dimensions to actually get a statement
about Hilbert polynomials.

22.1 The Proof

Now we’re ready to tackle (a slightly weaker, but still powerful version of) the theorem
we’ve been holding on to for a really long time: Bezout’s Theorem.

Theorem 22.4 (Bezout’s Theorem)

If X ⊆ Pn, dimX > 0, and F ∈ k[X0, . . . , Xn] is a homogeneous polynomial such that
no component of X is contained in Z(F ), then

deg(X ∩ Z(F )) = degX · degF.

If you look at Hartshorne Theorem 7.7, you see there’s one more aspect to this statement.
We can generalize the notion of intersection multiplicity to higher dimensions (the definition
of this becomes something purely commutative algebra). Then, deg(X∩Z(F )) is the sum of
the intersection multiplicities. This is the grown-up version of Theorem 3.8. We will exclude
this discussion, though, since it involves a more lengthy commutative algebra exposition that
we just don’t have time for.

Proof. Let S := k[X0, . . . , Xn]. We have a short exact sequence

0→ S/I(X)
F−→ S/I(X)→ S/(I(X) + (F ))→ 0,
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which yields the equation

χX∩Z(F )(d) = χX(d)− χX(d− degF ).

Expanding, the right hand side looks like

χX(d)− χX(d− degF ) =
degX

m!
(dm − (d− degF )m)

+ cm−1(d
m−1 − (d− degF )m−1) + l.o.t

=
degX

(m− 1)!
· degF · dm−1 + l.o.t.,

and so comparing the coefficients of the dm−1 term gives the desired result.

Example 22.5

This gives us Theorem 1.2: if C1, C2 ⊆ P2 with no common components, then deg(C1 ∩
C2) = degC1 · degC2.

22.2 Applications of Bezout’s Theorem

Let’s look at just how powerful this statement is by going through some of its consequences.
Some may seem surprising or not related to Bezout’s at all!

Corollary 22.6

Every isomorphism f : Pn → Pn is linear, i.e. f(x) = A · x for some A ∈ GLn+1(k).

Proof. LetH,L ⊂ Pn such that L is a line and L ̸⊆ H. Then, H∩L is just a point. As f is an
isomorphism, f(H)∩f(L) is also just a point. By Bezout’s Theorem, 1 = deg(f(H)∩f(L)) =
deg f(H) · deg f(L), so deg f(H) = deg f(L) = 1. In particular, deg f(H) = 1 means H is a
hyperplane. Applying this to Hi = (Xi = 0), we have Xi 7→

∑n
j=1 aijXi is an isomorphism,

so A = (aij)i,j is invertible.

Bezout’s Theorem is often used to count “bad things.” Here’s a good example:

Corollary 22.7

Let C ⊆ P2 be an irreducible curve of degree d. Then, there exists at most
(
d−1
2

)
singular points on C.

Thus, any cubic can have at most one singular point.

Proof. Assume the contrary. Then, there exists P1, . . . , P(d−1
2 )+1 singular points in C.

Choose Q1, . . . , Qd−3 other distinct points on C. In total, then, we have
(
d−1
2

)
+1+ d− 3 =(

d
2

)
− 1 points.
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Claim 22.8. There exists a curve C ′ of degree (d− 2) passing through all the Pi’s and
Qj’s.

Proof. Note that the set of hypersurfaces of degree m in Pn can be identified with P(
n+m
m )−1.

Thus, the set of curves of degree d − 2 in P2 can be identified with P(
d
2)−1. The set of all

curves of degree d− 2 in P2 passing through a specific point (say, P1) is a hyperplane HP1 ,
as this is just solving for the coefficients in

∑
aI · XI

0 = 0. But given
(
d
2

)
− 1 hyperplanes

in P(
d
2)−1, their intersection is non-empty, which means there exists a curve passing through

all Pi’s and Qj’s, as desired.

Now we can apply Bezout’s Theorem to C and C ′. We can look at deg(C ∩ C ′) in two
different way. First, we apply Bezout’s, from which we get degC · degC ′ = d(d − 2). The
other is via the sum of the intersection multiplicities (which we technically did not prove,
but trust that it is true – it’s in Hartshorne, Theorem 7.7), from which we get

deg(C ∩ C ′) ≥ (d− 3) · 1 +
((

d− 1

2

)
+ 1

)
· 2

= d− 3 + 2 + (d− 1)(d− 2)

= d2 − 2d+ 1,

where the (d− 3) comes from the Qj’s and the other term comes from the Pi’s. But this is
impossible, unless C and C ′ have a common component. By irreducibility of C, this means
C ⊆ C ′, but degC ′ < degC, a contradiction.

Well, that was a really good run everybody! There’s just so much in algebraic geometry,
but hopefully this class has (1) provided you with necessary background to keep working
on these things, and (2) given you a glimpse of how cool the subject can be. Good luck on
the exam!
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