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Math 122: Algebra I Preface

0 Preface

This class is from Fall 2022. Meeting times are Monday and Wednesday from 1:30-2:45pm.
There is no designated textbook, but the recommended texts are Dummit and Foote’s
Abstract Algebra, 3rd ed. (Chapters 1-9 is a superset of what will be covered in this class)
and Artin’s Algebra. The first half of the course will be on groups, and the second half will
focus on rings.

Problem sets will be assigned weekly and due every Wednesday. Office hours and section
times can be found on Canvas. The midterm will be on October 24.

If you see anything wrong or unclear, please let me know at hahnlheem@college.harvard.edu!

1 08/31 - Introducing Groups

A natural place to start is to define what a group is. We start with defining a binary
operation:

Definition 1.1 (Binary operation). A binary operation ∗ on a set G is a function

∗ : G×G→ G

(a, b) 7→ a ∗ b.

Remark 1.2. Two remarks:

1. A binary operation must always be with respect to a set. It doesn’t make sense to
have a binary operation without a set on which it is defined. For instance, when
I say multiplication, I mean different things in Z (the integers), in Z/pZ (integers
mod p), and in the set of n× n matrices.

2. We often call this binary operation ∗ as multiplication, and thus a lot of the
notation we use with binary operations will be borrowed from our notation for
multiplication, i.e. ab := a ∗ b. In the beginning, though, it is good practice to
not omit the ∗.

All the binary operations that we care about will satisfy associativity, that is ∀ a, b, c ∈
G, a∗(b∗c) = (a∗b)∗c. Some binary operations are commutative, i.e. ∀ a, b ∈ G, a∗b = b∗a,
but this will not always be the case.

Example 1.3 (Binary operations)

This may seem abstract a priori but is a very familiar notion:

• + is a binary operation in Z. It is both associative and commutative.

• + is not a binary operation in Z \ {0}, as 1 + (−1) = 0 /∈ Z \ {0}.

Hahn Lheem Page 5
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Math 122: Algebra I 08/31 - Introducing Groups

• × is a binary operation in the reals R. It is both assoc and comm.

• Denote Mn(R) as the set of all n× n matrices with real entries. Matrix multipli-
cation on this set is a binary operation; it is assoc but not comm.

• + on the set of evens (denoted 2Z) is a assoc and comm binary operation.

• Let X be a set, and define G := {f : X → X} the set of all functions from X
to itself. Function composition is a binary operation; it is associative but not
commutative.

1.1 Dihedral Group

Now perhaps my favorite example, and a pedagogically important one:

Example 1.4 (Symmetries of regular pentagon)

Consider the symmetries of a regular pentagon. By symmetries, we mean rigid motions
that involve taking the pentagon, “moving it around” and “placing it back” to the
original pentagon. In particular, there are two “types” of symmetries: rotation and
reflection. For instance, rotating the pentagon by 2π

5
radians counterclockwise is a

symmetry (call r), as is reflecting the pentagon by some axis of symmetry (call reflection
across the “vertical” axis as s):

1

2
3

4
5

1

5
4

3
2

s

1

2
3

4
5

r
5

4
3

2
1

Given this, there is a very natural binary operation: we can apply one symmetry after
another. s ◦ r involves rotating first, then reflecting. Work through it and convince
yourself that this is in fact another symmetry!

We call the set of symmetries of a regular pentagon (resp. n-gon) as D10 (resp. D2n).
This, as we will see soon, is a group!
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1.2 Defining a Group, with Many Examples

Speaking of groups, now we can define what a group is!

Definition 1.5. A group is an orderd pair (G, ∗) for a set G and a binary operation
∗ : G×G→ G such that

1. ∗ is associative

2. There exists e ∈ G called the identity, so that e ∗ g = g ∗ e = g for all g ∈ G.

3. For every g ∈ G, there exists an inverse g−1 ∈ G such that g ∗ g−1 = e = g−1 ∗ g.

Remark 1.6. Note here that a group is a set with a specified operation. Specifying
the operation is important! However, if the operation is well-understood (e.g. for the
symmetries of a regular pentagon, there is really only one operation), then we omit
specifying the operation.

So a group is a very simple algebraic object! It only has three axioms. But somehow,
these three axioms encapsulate a lot of things which interest mathematicians.

Example 1.7 (D10 is a group)

The D stands for dihedral, so this is called the dihedral group of order 10. Let’s
work through the axioms. We established that composing two symmetries is associative,
so Axiom (1) is good. The identity symmetry is the “do nothing” symmetry – think
of picking up the pentagon and placing it down exactly as it was. Finally, you can
intuitively convince yourself that every symmetry has an inverse, as there is a notion of
“undoing” a rotation or reflection.

It’s important to note that ∗ need not be commutative. But it’s damn nice if it happens
to be, so much so we give it a name:

Definition 1.8. A group (G, ∗) is called abelian if ∗ is commutative.

Example 1.9

(R×,×) is an abelian group! (R× = R \ {0}) As is (C×,×). (Just work through the
axioms.)

We’re going to continue working with examples of groups – the more examples, the more
intuitive this notion will become. For each one, work through the three axioms (and check
that the operation is a binary operation!) and convince yourself that this is in fact a group
(I’ll help you with some):

Hahn Lheem Page 7
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Example 1.10 (Special Linear Group)

Let G := {A ∈ M2(R) | det(A) = 1}, and consider (G,×). First, this is indeed
a binary operation, since det(AB) = det(A) det(B) by something something linear

algebra. Matrix multiplication is associative. The identity matrix is I =

(
1 0
0 1

)
.

Finally, any matrix A ∈ G has an inverse, since det(A) = 1 ̸= 0, and det(A−1) =
(det(A))−1 = 1, so A−1 ∈ G.

Often, we notate this group as SL2(R), called the special linear group.

Example 1.11 (D6)

Consider D6, the symmetries of an equilateral triangle. Again, there are two “types” of
symmetries: rotation and reflection. Denote r as rotation by 2π

3
radians counterclock-

wise. Choose an axis of symmetry, and denote s as the reflection across this axis.

• Consider s ◦ r, that is, rotating first, then reflecting. Is this another symmetry?
(Yes.) Which one? How could we get to this configuration in one “step”?

• Convince yourself that combining any two symmetries gives another symmetry.

• We’ll take associativity for granted, but perhaps convince yourself that our binary
operation here is indeed associative.

• What is the identity element? Look back at D10.

• Convince yourself that every symmetry has an inverse.

• How many elements are there in D6? Can you write out all elements of D6? Even
better, can you write out all elements of D6 in terms of r and s?

Example 1.12 (Symmetric group)

Let S3 be the set of all bijective functions f : {1, 2, 3} → {1, 2, 3}. (If you like
permutations more than functions, you can think of S3 as the set of all permuta-
tions on the set {1, 2, 3}.) More generally, Sn is the set of all bijective functions
f : {1, 2, . . . , n} → {1, 2, . . . , n}. One can compute |Sn| = n! (n choices for where
1 goes, then n− 1 choices for where 2 goes, etc).

Let function composition ◦ be our binary operation (it is indeed binary, as two
bijective functions composed gives another bijective function). Function composition is
always associative, so this checks off the first axiom. The identity is, well, the identity
function, i.e. f(x) = x. Finally, a bijective function must have an inverse by definition,
so all group axioms are satisfied.

The symmetric group is powerful because, for a set with n elements, it encapsulates all
possible symmetries. And this is what any group is doing: a group is specifying certain
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symmetries on a set. D10 is, in the end, simply permuting five vertices, but with certain
restrictions, which restricts the number of symmetries we have (|D10| = 10 < 120 = |S5|).
We’ll see this more formally stated later on in the class.

1.3 Proving Properties

As this is a proof-oriented class, perhaps we should prove one of two things before class
ends.

Theorem 1.13 (Cancellation Law)

If (G, ∗) is a group and ab = cb (resp. ba = bc), then a = c for all a, b, c ∈ G.

Proof. Suppose ab = cb. By Axiom 3, the inverse of b exists. Multiply both sides on the
right by b−1:

(ab)b−1 = (cb)b−1

a(bb−1) = c(bb−1)

a(e) = c(e)

a = c.

The proof works similarly for showing ba = bc =⇒ a = c.

It’s impressive that the proof above, although short, uses all three axioms! This goes to
show the compact yet purposeful nature of the group definition.

Proposition 1.14

If (G, ∗) is a group,

1. The identity of G is unique.

2. For each a ∈ G, the inverse a−1 is unique.

3. (a−1)−1 = a for a ∈ G.

4. (ab)−1 = b−1a−1.

Proof. Statement (1): Suppose e1, e2 are two identities. Then, e1 = e1 ∗ e2 = e2. (Alter-
nately, use Cancellation Law to get e1 ∗ e1 = e1 = e1 ∗ e2 =⇒ e1 = e2.)

Statement (2): Assume b, c are two inverses for a ∈ G. This means ab = e = ac =⇒
b = c by uniqueness of identity and Cancellation Law.

Statement (3): Note aa−1 = (a−1)−1a−1 = e by definition of the inverse. In particular,
a and (a−1)−1 are both the inverse of a−1, so by (2) the result follows. (You can also use
Cancellation Law, but we’re trying not to use the same hammer for every nail.)

Hahn Lheem Page 9



Math 122: Algebra I 09/07 - Group Homomorphisms & Isomorphisms

Statement (4): Note (ab)(b−1a−1) = a(bb−1)a−1 = a(e)a−1 = aa−1 = e, so b−1a−1 is
the inverse of ab. By uniqueness of inverse, the result follows.

So it seems like from the axioms alone, we can prove a lot. It’s really mind-blowing to
think that everything we prove in the first half of this class will come from just these three
axioms. We’ll continue proving more fundamental properties about groups next week.

2 09/07 - Group Homomorphisms & Isomorphisms

We start with focusing our attention to two groups we covered last time. Reminder that
we need to specify an operation when we introduce a group, but for these examples, the
operation is well-understood, so we omit them for notation’s sake.

2.1 D6 ≃ S3

Recall

S3 := {f : {1, 2, 3} → {1, 2, 3} bijective}
D6 := {symmetries of an equilateral triangle}.

We established last time that |S3| = |D6| = 6. This is a fruitful observation.

We’re going to investigate the “similarities” between the two groups now. Denote s as
reflection of the triangle across the vertical axis, and let r be the rotation of the triangle
2π/3 radians clockwise (last time we specified counterclockwise, but Dummit and Foote
uses clockwise, so we’ve adapted accordingly).

Exercise 2.1. Label the vertices as 1, 2, 3. How does the rotation r map the vertices?
Where does vertex 1 go? 2? 3? Can you express the rotation r, then, as a bijective
function?

A key observation is that every symmetry of the triangle is simply permuting the vertices
of the triangle. In other words, it maps bijectively the set of vertices of the triangle to itself.
This means that every element in D6 is an element in S3 in disguise!! So we can establish
D6 ⊆ S3.

But now we employ our observation that |D6| = |S3| = 6. This requires for the inclusion
to be an equality, so D6 = S3.

2.2 Definitions

But wait, what does it even mean for two groups to be equal to each other? We’ll provide
a formal way of describing these “equalities” before providing a more intuitive explanation.
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Definition 2.2 (Group Homomorphism). Let (G, ∗G) and (H, ∗H) be groups. A func-
tion φ : G→ H is a homomorphism if ∀x, y ∈ G,

φ(x ∗G y) = φ(x) ∗H φ(y).

To clarify, ∗G is the group binary operation for the group G, and ∗H likewise for H.
The notation is a bit clunky, though, so sometimes we’re lazy and adopt the multiplication
notation for both: φ(xy) = φ(x)φ(y).

We need something a bit more powerful to make this embody our notion of equality:

Definition 2.3 (Group Isomorphism). A group homomorphism G → H is called a
group isomorphism if it is bijective. We write G ≃ H.

Intuitively, here’s what’s happening: a homomorphism is saying that the group structure
of G and H, respectively, are the same. Whatever operation we take in G has an analogous
operation in H. An isomorphism specifies this further by saying that every operation in
H has an analogous operation in G as well. This produces a one-to-one correspondence
between the two groups where all corresponding operations coincide, so they’re the same.

Here’s another way of thinking about isomorphisms: you can call two groups different
things, label its elements different things, but at the end of the day they’re the same group.
They have the same structure with respect to the group axioms.

2.3 Isomorphism Examples

As always, it’s best to learn through examples:

Example 2.4 (Groups with Two Elements)

We already “showed” D6 ≃ S3. Here is another: let S2 = {e, σ} be the symmetric group
on two elements, i.e. e is the map sending e(1) = 1 and e(2) = 2, and σ is the map
σ(1) = 2, σ(2) = 1. I claim there is an isomorphism

φ : ({+1,−1},×)
≃−→ S2

where φ(1) = e and φ(−1) = σ. This is illustrated by the following multiplication
tables. Note that they are exactly the same, just with different labels for elements:

· 1 −1
1 1 −1
−1 −1 1

◦ e σ
e e σ
σ σ e

Example 2.5 (Turning + into ×)
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A useful one! Denote R≥0 as the set of positive real numbers. We have an isomorphism

φ : (R,+)
≃−→ (R≥0, ·)

x 7→ ex.

First, this is a homomorphism: ex+y = φ(x + y) = φ(x) · φ(y) = ex · ey, which is true.
Note that the left hand side has addition, while the right has multiplication. This aligns
with how we define φ, as it takes a group with the addition operation to a group with
the multiplication operation. Furthermore, it is an isomorphism as it has an inverse,
namely the log function.

2.4 Non-Isomorphism Examples

Example 2.6 (Multiplication by n ∈ Z)
Fix n ∈ Z, and define the map φ : (Z,+) → (Z,+) where φ(k) = nk. This is a group
homomorphism: if k, ℓ ∈ Z, then

n(k + ℓ) = φ(k + ℓ) = φ(k) + φ(ℓ) = nk + nℓ.

However, it is not a group isomorphism. An intuitive arguemnt is as follows: if it was,
then its inverse map would be multiplication by 1/n, but this map doesn’t guarantee
integer outputs. To be more formal, we can show that φ is not surjective: there does
not exist a k ∈ Z such that nk = φ(k) = 1.

Example 2.7 (Determinants)

Finally, we can view taking the determinant of a matrix as a map, namely taking in
a matrix and outputting a real number. Denote GLn(R) as the set of n × n invertible
matrices with real entries, and define the map

det : (GLn(R),×) → (R \ {0},×)

A 7→ det(A).

This is a homomorphism! From linear algebra, we know for two matrices A,B ∈
GLn(R), det(AB) = det(A) det(B). However, this is not an isomorphism, as the det

map is NOT injective. For instance,

(
1 0
0 1

)
and

(
2 1
1 1

)
both have determinant 1.

2.5 Conjugation

Finally, a super important isomorphism, one which will come up over and over again in this
course (and beyond!):
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Example 2.8 (Conjugation)

Let G be a group, and fix an element g ∈ G. Define a map

φg : G→ G

a 7→ gag−1.

φg is called conjugation by g. This is indeed a homomorphism: given a, b ∈ G,

φg(a)φg(b) = (gag−1)(gbg−1) = ga(g−1g)bg−1

= (ga)(bg−1) = g(ab)g−1

= φg(ab).

Even better, it is an isomorphism! We claim that the inverse of our map φg is precisely
φg−1 . We verify:

(φg ◦ φg−1)(a) = φg(g
−1ag) = g(g−1ag)g−1 = a

(φg−1 ◦ φg)(a) = φg−1(gag−1) = g−1(gag−1)g = a,

as desired.

This conjugation map is even more special because it is a map from G to itself. These are
so special, they have its own name:

Definition 2.9 (Automorphism). An isomorphism is called an automorphism if its
domain and codomain are the same. Given a group G, we define

Aut(G) := {φ : G→ G | φ isomorphism}.

2.6 Homomorphisms Respect Structure

The following proposition is a good demonstration of homomorphisms indeed respecting
group structures. The first two statements state that homomorphisms map the identity to
the other respective identity, and likewise for inverses.

Proposition 2.10

Let φ : G→ H be a homomorphism. Then,

1. φ(eG) = eH

2. φ(a−1) = (φ(a))−1

3. If φ : G→ H is a group isomorphism, then its inverse φ−1 : H → G is also.

Proof. Statement (1): Let eG be the identity element of G. We have φ(eG) = φ(eGeG) =
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φ(eG)φ(eG), so by Cancellation Law, we conclude φ(eG) = eH .

Statement (2): Let a ∈ G. We want to show φ(a−1)φ(a) = eH and φ(a)φ(a−1) = eH .
For the first equality, as φ is a homomorphism, we have φ(a−1φ(a) = φ(a−1a) = φ(eG) = eH
by Statement (1). The second equality follows similarly: φ(a)φ(a−1) = φ(aa−1) = φ(eG) =
eH .

Statement (3): Let a, b ∈ G. As φ is a homomorphism,

φ(φ−1(a)φ−1(b)) = φ(φ−1(a))φ(φ−1(b)) = ab.

As φ is bijective (it is an isomorphism), this must mean φ−1(a)φ−1(b) = φ−1(ab), so it is a
homomorphism. The conclusion follows since φ−1 is bijective as φ is bijective.

2.7 Defining Orders

We end class by introducing a definition which we’ll use many times throughout the course.
Corresponding resource: around pg 20 in Dummit and Foote.

Definition 2.11 (Order of element). Let G be a group and x ∈ G. The order of x is
the smallest positive integer n such that

xn = x ∗ x ∗ · · · ∗ x︸ ︷︷ ︸
n times

= e.

We notate the order of x by |x|. By convention, if no positive power of x is the identity,
then |x| = ∞.

Exercise 2.12. Find the order of the identity element for any group. Find all elements
with finite order in the multiplicative group (C \ {0},×). (Hint: there are infinitely
many of them!)

Exercise 2.13 (Orders in D10). Take the symmetries of the pentagon D10. Let r be
rotation by 2π/5 radians clockwise, and s be the reflection across some fixed axis. Find
|r| and |s|. Find |s ◦ r|.

We’ll leave this one for next time:

Proposition 2.14

Let G be a group and a ∈ G. If ak = e for some k ∈ Z, then |a| | k.

3 09/12 - Subgroups, Cyclic, More on Orders

3.1 Orders and Divisibility
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Exercise 3.1. Last time, we demonstrated D6 ≃ S3. But can D2n ≃ Sn if n > 3?

Proof. A quick cardinality argument suffices. One can check |D2n| = 2n and |Sn| = n!, and
if these two groups were isomorphic, then their cardinality must be the same. This is not
the case for n > 3.

So isomorphisms must preserve the size of a group. They also preserve other things, like
the order of elements. We start here, which we stated last time:

Proposition 3.2

Let G be a group, a ∈ G. If ak = e for k ∈ Z, then |a| | k.

Proof. Let a ∈ G, and denote n = |a|. We prove by contradiction using Division Algorithm
on k and n: we can write k = n · b+ r for b, r ∈ Z, 0 ≤ r < b. But note that

e = ak = anb+r = (an)b · ar = ar

so if r > 0, then ar = e and r < n, which contradicts the minimality of the order n. Thus,
r = 0, which means k = nb, so n | k, as desired.

Now we make our claim on preserving orders more precise:

Proposition 3.3 1. If φ : G → H is a group homomorphism and a ∈ G, then
|φ(a)| | |a|.

2. If φ : G→ H is a group isomorphism and a ∈ G, then |φ(a)| = |a|.

We’ll prove the two statements separately.

Proof. (Statement 1) Let a ∈ G. Denote n = |a|, so an = e. Applying φ to both sides,
we get φ(an) = φ(e) = e. By definition of homomorphism, we have φ(an) = φ(a)n, so
φ(a)n = e. By our above proposition, this means |φ(a)| divides n.

Proof. (Statement 2) By Statement 1, we already know that |φ(a)| divides |a|. It then
suffices to prove |a| divides |φ(a)|. Denote m = |φ(a)|, so (φ(a))m = e. But by definition of
homomorphism, we can write (φ(a))m = φ(am) = e. As φ is an isomorphism (in particular,
it is injective), we must have am = e. Using Proposition 3.2, we get m divides |a|, as
desired.

3.2 Subgroups

This is the start of Section 2 in Dummit and Foote. Very simply, a subgroup is just a subset
of a group that happens to be a group itself. We see that this arises pretty naturally – e.g.
if you ocnsider only the rotations in the dihedral group, that forms a group – and it is a
powerful way of encoding more information about our groups.
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Definition 3.4. Let (G, ∗) be a group. A subset H ⊆ G is a subgroup if H is non-
empty and H is closed under products and inverses, i.e. if x, y ∈ H, then xy ∈ H and
x−1 ∈ H. For notation, if H is a subgroup, we write H ≤ G.

A quick observation: e ∈ H. Let’s prove it! We’re going to use all three axioms of a
subgroup: (1) it is non-empty, (2) it is closed under products, and (3) it is closed under
inverses. Let H ≤ G. By (1), we have some x ∈ H. By (3), x−1 ∈ H as well. And (2)
brings us home since xx−1 = e ∈ H.

Note that H inherits the group operation ∗ from G, and equipped with this operation,
(H, ∗) is itself a group. So the name “subgroup” is not a misnomer, whew.

Example 3.5 (Subgroup Examples)

A few, building off of the groups we’ve introduced before:

1. (Z,+) ≤ (Q,+) ≤ (R,+).

2. For every G, {e} ≤ G (the trivial subgroup) and G ≤ G.

3. Reminder GLn(R) is the set of n× n matrices with real entries and determinant
non-zero, and SLn(R) the same but with determinant 1. Then, SLn(R) ≤ GLn(R).

4. A non-example: (Q \ {0},×) is NOT a subgroup of (R,+) because the binary
operation is different.

3.3 Subgroups of Dihedral (Square)

Because we like our dihedral groups so much:

Example 3.6 (Subgroups of D8)

Consider the symmetries of a square D8. Choose your favorite axis of symmetry, and
call s the reflection across that axis. Call r the rotation by 90◦ clockwise. We can write
the elements of D8 as D8 = {e, r, r2, r3, s, rs, r2s, r3s}.

One subgroup is the one where we only take rotations, i.e. the subset {e, r, r2, r3}.
Clearly it is non-empty; we can check it is closed under inverses: r−1 = r3, (r2)−1 = r2,
and (r3)−1 = r. (What is the inverse of e?) It is also closed under products: for example,
r2r3 = r5 = r since r4 = e.

Another subgroup is {e, s}. Verify that this is a subgroup. Can you find another
group which is isomorphic to this one? (What groups with two elements do you know?)

Finally, let’s take a spicier subgroup. We’ll start with three elements: e, s, r2. Note
that each serves as their own inverse. If we are to construct a subgroup, we need to
make sure this set is closed under products, so our set must include r2s. We claim that
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r2s is also its own inverse, proving it via the identity rs = sr−1 (from homework):

(r2s)(r2s) = (r2s)(rrs) = (r2s)r(sr−1) = r2s(rs)r−1 = r2ssr−1r−1 = r2er−2 = e.

This set {e, s, r2, r2s}, we claim, is a subgroup of D8. (Check it yourself!)

There’s a lot to unpack here.

The nice thing is that we found two subgroups of D8 with 4 elements! This particular
subgroup is actually a really important; we denote it as V4, called the Klein four-group.
Note that this subgroup is NOT isomorphic to the subgroup of just rotations: for rotations,
r has order 4, but there is no element in V4 that has order 4 (the identity has order 1, and
everything else has order 2).

We can have “chains” of subgroups: for instance, {e, s} ≤ V4 ≤ D8 and {e, r2} ≤
{e, r, r2, r3} ≤ D8. The property of being a subgroup is transitive, that is, if H ′ ≤ H and
H ≤ G, then H ′ ≤ G. This follows roughly from the definition of a subgroup, as H ′ inherits
the group operation from G, and closure of product and inverses is independent of the larger
group.

3.4 Cyclic (Sub)groups

We spoke a lot about the V4 subgroup, but the other subgroup with four elements, namely
the subgroup of rotations {e, r, r2, r3}, is quite nice as well! Notably, it is generated by a
single element (r). Such a subgroup (resp. group) is called a cyclic subgroup (resp. group).
More specifically, the cyclic subgroup of G generated by a is

⟨a⟩ = {an | n ∈ Z}.

If this cyclic subgroup is the entire group, we say the group itself is cyclic.

Definition 3.7 (Cyclic group). A group G is cyclic if G = ⟨a⟩ for some a ∈ G. We
say G is generated by a.

How many elements are in ⟨a⟩? In the case of ⟨r⟩ ≤ D8, we have | ⟨r⟩ | = 4. But if we take
⟨2⟩ ≤ (R \ {0},×), then the subgroup has infinitely many elements. We can note, though,
that |r| = 4 and |2| = ∞, which is basically exactly what’s going on here. Let’s make this
relation explicit:

Theorem 3.8 (Order of group is order of generator)

Suppose G = ⟨a⟩ for some a ∈ G, i.e. G is cyclic. Then, |G| = | ⟨a⟩ | = |a|.

Proof. First, we take the case where |a| = n is finite. Consider e, a, a2, . . . , an−1 ∈ G. By
minimality of n, they are all distinct; in particular, if ai = aj for 0 ≤ i ≤ j < n, then
ai(aj−i) = ai =⇒ aj−i = e. But by Proposition 3.2, n | j − i. If i = j, we’re good;
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otherwise, since 0 < j − i and j − i ≤ j < n, we reach a contradiction from the minimality
of n, so indeed i = j.

Since all the elements e, a, a2, . . . , an−1 are distinct, we have n ≤ |G|. Now we wish to
show these elements are in fact all the elements of G, i.e. {e, a, . . . , an−1} = ⟨a⟩. Luckily,
this follows directly from Division Algorithm! Take any k ∈ Z. By Division Algorithm
∃ q, r ∈ Z with 0 ≤ r < n such that k = nq + r. This means that

ak = anq+r = (an)q · ar = ar,

so any element of ⟨a⟩ ends up being equal to one of e, a, a2, . . . , an−1, which is what we
wanted to prove.

To finish up, we take the case when |a| is infinite. If an = ak for n, k ∈ Z, then an−k = e,
which is only possible if n = k since |a| is infinite. Thus, we can find infinitely many distinct
elements in ⟨a⟩ (take an for any n ∈ Z), so | ⟨a⟩ | = ∞.

Next time, we will see that we can “classify” these cyclic groups completely! If you want
to work this out yourself before next lecture, start with trying to find all cyclic groups of
order n (n ∈ Z). Let G1 and G2 be two such groups. Can you find an isomorphism between
them?

4 09/14 - Subgroup Properties and Examples

4.1 More on Cyclic Groups

We’re picking up directly from last time. I think the following result is a good example of
where “proof by example” doesn’t hurt, i.e. if you take something like (Z/5Z,+) and the
subgroup of rotations in D10 and show that they are isomorphic, then you’ve basically done
it for the general case.

Theorem 4.1

Any two cyclic groups of the same order are isomorphic.

Proof. First, we assume the order is finite. Let ⟨x⟩ and ⟨y⟩ be two cyclic groups with
| ⟨x⟩ | = | ⟨y⟩ | <∞. We wish to show ⟨x⟩ ≃ ⟨y⟩.

To show that two groups are isomorphic, we just need to construct an isomorphism
between them. Let φ : ⟨x⟩ → ⟨y⟩ such that φ(xn) = yn. We must first verify that φ is
well-defined, i.e. every element gets mapped to a single element. (Showing well-definedness
is an often overlooked but crucial step!) Then, we will verify that φ is a isomorphism, i.e.
a bijective homomorphism.

Step 1, well-definedness: It suffices to show that if xn = xm for n,m ∈ Z, then φ(xn) =
φ(xm). By our definition of φ, this is equivalent to showing yn = ym. Since xn = xm,
multiply by x−m on both sides to get xn−m = e. By Proposition 3.2, we have |x| | n −m.
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But as | ⟨x⟩ | = |x| by Theorem 3.8, we get |x| = | ⟨x⟩ | = | ⟨y⟩ | = |y|, so |y| | n −m. This
means yn−m = e, which means yn = ym as desired.

Step 2, homomorphism: This is not so bad!

φ(xn · xm) = φ(xn+m) = yn+m

φ(xn)φ(xm) = yn · ym = yn+m.

Step 3, bijective: Surjectivity is clear: given any yn ∈ ⟨y⟩, we know φ(xn) = yn. But
now the finiteness of these two groups gives us injectivity, since if a function f : S → T is
surjective, then |S| ≥ |T |, with equality iff f is bijective. As | ⟨x⟩ | = | ⟨y⟩ | and φ : ⟨x⟩ → ⟨y⟩,
we’re done with the finite case!

Now we address the case where | ⟨x⟩ | = | ⟨y⟩ | = ∞. We need to go through the same
steps: constructing a map, showing it’s well-defined, then showing it’s an isomorphism.
We’ll take the same one we took for the finite case: define a map φ : ⟨x⟩ → ⟨y⟩ where
xn 7→ yn. This is well-defined, as y has infinite order so yn = ym only if n = m. This is
also a homomorphism from the same reasoning as in the finite case, and it is bijective by
construction. The conclusion follows.

4.2 Subgroups with Multiple Generators

The corresponding section in Dummit and Foote is Section 2.4.

Let G be a group and A ⊆ G be a subset. We want to answer the following ques-
tion:

How can we describe the smallest subgroup of G containing A?

By smallest here, we mean that if H is the smallest such subgroup, then for any other
subgroup H ′ ≤ G which contains A, H ⊆ H ′. We’re going to call this subgroup the subgroup
of G generated by A and denote it as ⟨A⟩, since the elements of A are the generators of this
subgroup.

Perhaps starting when A = {g} is a single element is a good idea to gain some intuition.
Suppose H ≤ G is a subgroup containing g. Since subgroups are closed under products, we
require g ∗ g = g2 ∈ H, as well as g ∗ g ∗ g = g3 and, more generally, any gn for n ≥ 1. H
is also closed by inverses, so g−1 ∈ H, and through a similar argument, g−n ∈ H. Finally,
gg−1 = e ∈ H, so we see that H must necessarily contain ⟨g⟩. Even better, the smallest
such subgroup is exactly ⟨g⟩, so ⟨{g}⟩ = ⟨g⟩.

Example 4.2 (Subgroups of D8, revisited)

Take the symmetries of the square D8. The subgroup generated by r is {e, r, r2, r3}.
(I’ve been referring to this subgroup in these notes as the “subgroup of rotations.”) The
subgroup generated by s is {e, s}. These two are cyclic subgroups, since they only have
one generator.
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For a more interesting example, let’s compute ⟨A⟩ for A = {r2, s}. Convince yourself
that ⟨A⟩ = {e, r2, s, r2s}.

Exercise 4.3. We identified this last subgroup before. What is it? What name did we
give it?

4.3 Properties of Subgroups

Before you read the following claims, try to answer the following questions yourself. Let
H1, H2 ≤ G be subgroups. Is H1 ∪H2 a subgroup? Is H1 ∩H2 a subgroup?

Claim 4.4. The union of two subgroups is not always a subgroup. (Take ⟨r2⟩ ∪ ⟨s⟩ =
{e, r2, s} ⊂ D8.)

Things are more hopeful for intersections, though!

Claim 4.5. The intersection of two subgroups is a subgroup!

The proof of this is basically being careful with the definition of a subgroup and making
sure the intersection still satisfies all the properties. To give partial work, we know e ∈ H1

and e ∈ H2, so e ∈ H1 ∩ H2. Suppose we have a, b ∈ H1 ∩ H2. This means a, b ∈ H1 and
a, b ∈ H2, so by closure of product in each subgroup, ab ∈ H1 and ab ∈ H2, which implies
ab ∈ H1∩H2. Proving inverses are closed under the intersection follows a similar argument.

Note that this proof can be generalized to show that the intersection of arbitrarily many
subgroups is still a subgroup! This allows us to give the following characterization of ⟨A⟩:

⟨A⟩ =
⋂
H≤G
H≥A

H.

This may seem intimidating, but it’s actually not telling us anything new – rather, it’s
just a nice, compact way of defining ⟨A⟩. You can prove this by showing inclusion in both
directions, but the arguments just follow from the definition.

Exercise 4.6. Let A = {a, b} ⊆ G. Write down as many elements of ⟨A⟩ as you can!
(This may seem like a silly exercise, but it’ll actually be useful in the future. Check
out free groups for context.)

Example 4.7 (D8 in terms of generators)

You’ve probably realized through the problem sets and playing around with the group
D8 (or in general, D2n) that any element of D8 can be written in terms of r and s. One
way of doing this is

D8 = {e, r, r2, r3, s, rs, r2s, r3s},
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and any other expression with r and s can be simplified to one of the eight above
elements via the identities rs = sr−1 and r4 = s2 = e. Thus, D8 = ⟨r, s⟩ is the group
generated by {r, s} equipped with these identities!

Remark 4.8. Here’s a better, more complete way to express D8 in terms of its gen-
erators. Note that the generators of D8 satisfies special identities, i.e. rs = sr−1 and
r4 = s2 = e, and in fact, you can use these identities alone to simplify any expression
in terms of r and s as an element in D8.

This is the motivation for what we call a group presentation: we specify the
generators of the group, and then state the relations of these generators (our identities
from before). This is written as ⟨generators | relations⟩, so we can write

D8 =
〈
r, s | rs = sr−1, r4 = s2 = e

〉
.

The fascinating thing about the group presentation is that although we can think of r and
s as rotations and reflections, this way of presenting the group completely rips the group
away from any geometric context. Every element in this group can be written in terms of
two variables which satisfy certain properties – it just happens that there is a nice geometric
interpretation of these properties. We’ll (hopefully) see more of this later on in the course.

4.4 Centralizers

This is Section 2.2 in Dummit and Foote.

Definition 4.9 (Centralizer). Let A ⊆ G be a subset of group G. The centralizer of
A is

CG(A) := {g ∈ G | gag−1 = a∀ a ∈ A},

i.e. it is the set of all group elements which commute with every a ∈ A.

Observe CG(A) ⊆ G; it would be nice if it were a subgroup. Luckily, math is often nice
(unless you’re doing it at 3am on a Tuesday night rip):

Proposition 4.10

CG(A) ≤ G is a subgroup.

Proof. First, it is non-empty, as one can show e ∈ CG(A). Next, we show that it is closed
under inverses. If g ∈ CG(A), then by definition, gag−1 = a for all a ∈ A. But this means

a = g−1(gag−1)g = g−1(a)g,

so g−1 ∈ CG(A) as well. Finally, if g, h ∈ CG(A), then for all a ∈ A, gag−1 = hah−1 = a.
Thus, we have

(gh)a(gh)−1 = g(hah−1)g−1 = gag−1 = a,
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and so gh ∈ CG(A) as well.

Definition 4.11 (Center). CG(G) = Z(G) is the center of G.

Example 4.12 (Centralizers of D8)

Let G = D8 and A = {r} ⊆ G. We know that any ri commutes with r (more powerfully,
the subgroup of rotations is abelian), so CG(r) ⊇ {e, r, r2, r3}. Could there be more?

From the problem set, we showed that rs = sr−1 ̸= sr, so s /∈ CG(r). But could
ris ∈ CG(r) (for 1 ≤ i ≤ 3)? Suppose yes, for the sake of contradiction. Since
r−i ∈ CG(r) and CG(r) is a subgroup, r−iris = s ∈ CG(r) by closure of products, which
we already established cannot be the case. Thus, we have CG(r) = {e, r, r2, r3} = ⟨r⟩!

Exercise 4.13. Compute C(D8), the center of D8.

4.5 Kernel and Image

If you know these terms from linear algebra, you’re in luck – the terms mean the exact same
thing here. The only difference is that in linear algebra, functions are linear maps. Here,
they are homomorphisms.

Let φ : (G, ∗G) → (H, ∗H) be a group homomorphism.

Definition 4.14 (Kernel, Image). The kernel and image of φ are, respectively,

kerφ = {g ∈ G | φ(g) = eH}
Imφ = {φ(g) | g ∈ G}.

Well, I named today’s lecture as “Subgroup Properties and Examples” so we better hope
that kerϕ and Imϕ are both subgroups.

Proposition 4.15

If φ : G→ H is a group homomorphism, then kerφ ≤ G and Imφ ≤ H.

Proof. We first show that kerφ ≤ G. First, it is non-empty, as φ(eG) = eH . Now we
show closure of inverses. If g ∈ kerφ, then φ(g) = eH , so φ(g

−1) = (φ(g))−1 = e−1
H = eH ,

which means g−1 ∈ kerφ. Finally, if g1, g2 ∈ kerφ, then φ(g1) = φ(g2) = eH , which means
φ(g1g2) = φ(g1)φ(g2) = eH ∗ eH = eH . This implies g1g2 ∈ kerφ.

Now we can show Imφ. (Myrto: “this is left as an exercise for the reader.”)
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5 09/19 - Lagrange’s Theorem

We’ve been dealing with a lot of results related to divisibility, e.g. if ak = e, then |a| divides
k. One may have noticed just by playing with examples that the order of an element always
divides the number of elements in the group. Equivalently, for any g ∈ G, | ⟨g⟩ | divides |G|,
and ⟨g⟩ ≤ G. But can we generalize?

A remarkable theorem tells us that yes, this is the case:

Theorem 5.1 (Lagrange’s Theorem)

If H ≤ G, then |H| | |G|.

This is a very simple result to state, and it’ll turn out that it has a simple proof as well.
The most difficult part, in my opinion, is setting up the appropriate language to prove it.
So we’ll start with a series of definitions:

5.1 Partitions and Equivalence Relations

These notions are pretty general – in fact, this entire section is not specific to groups at all –
but they will be central to our language for proving our main theorem. Don’t be scared by
these definitions, as you are probably familiar with these notions already. We just present
them in this manner for formalization purposes.

Definition 5.2 (Partition). Let S be a set. A partition of S is a a collection of subsets
{Si : i ∈ I} (I is just some indexed set) such that

S =
⊔
i∈I

Si

with the following two conditions:

• Si ̸= ∅

• If Si ̸= Sj, then Si ∩ Sj = ∅, i.e. they are disjoint.

Example 5.3 (Partitions of Z)
These are kinda stupid, but we’ll provide two partitions of Z:

Z = {n ∈ Z | n > 0} ⊔ {0} ⊔ {n < 0 | n ∈ Z} =
⊔
n∈Z

{n}.

Another useful (and already familiar) definition is an equivalence relation.
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Definition 5.4 (Equivalence relation). An equivalence relation on S is a binary
relation ∼ such that for any x, y, z ∈ S, we have

1. (Reflexivity.) x ∼ x

2. (Symmetry.) x ∼ y ⇐⇒ y ∼ x

3. (Transitivity.) x ∼ y and y ∼ z implies x ∼ z

Example 5.5 (Equivalence relations on Z)
Perhaps the easiest one, besides our usual notion of equality in any familiar number
system, is congruence under some modulus. In particular, for any fixed n ∈ Z, we can
define our equivalence relation ∼ as a ∼ b iff n | a− b, i.e. a ≡ b (mod n).

Whenever we deal with equivalence relations from here on out, use this one as your point
of reference. There are many quirkier examples out there though!

Given an equivalence relation, we can now define equivalence classes. This is a pow-
erful concept, as we’ll see soon:

Definition 5.6 (Equivalence class). The equivalence class of x ∈ S is the set

Cx = {y ∈ S | y ∼ x} =: x.

In Z with the equivalence relation ≡ (mod n), C0 = nZ, and in general Ca = {y ∈ Z | y =
ns+ a, s ∈ Z}.

Exercise 5.7. Convince yourself that Ca = Cn+a, i.e. they are exactly the same set.
How many total distinct equivalence classes are there?

I argue this is the pedoagogically correct way to think about modular arithmetic, even if
it may be inconvenient at first. I always found it a bit odd that the integers mod n are
written as {0, 1, . . . , n − 1}; for instance, I could write Z/3Z = {3, 7, 38} with 7 + 7 ≡ 38,
etc. and everything would still be valid. The way to get around this arbitrary choice is
to not make an arbitrary choice in the first place, and rather think of these elements as
equivalence classes. 0 (or 3, or any multiple of 3) is merely acting as a representative of the
equivalence class C0.

From the above exercise, one may understand why we brought up partitions. The
equivalence classes form a partition of the set! For instance, the integers can be partitioned
into evens and odds, which correspond to the equivalence classes under congruence mod 2.
We’ll state this more generally:

Proposition 5.8

Any equivalence relation on a set S determines a partition of S, and vice versa.

Hahn Lheem Page 24



Math 122: Algebra I 09/19 - Lagrange’s Theorem

Proof. Suppose ∼ is an equivalence relation on S. First, we’ll prove the forward direction:
the distinct equivalence classes Cx = {y ∈ S | y ∼ x} = x form a partition of S.

We have x ∈ Cx by reflexivity, so in particular Cx ̸= ∅. Furthermore, we know that every
element x belongs in an equivalence class, namely Cx. It remains to show that if Cx ̸= Cy

for x, y ∈ S, then Cx ∩ Cy = ∅.
Assume for the sake of contradiction that z ∈ Cx ∩ Cy. Then, z ∼ x and z ∼ y, so by

symmetry, x ∼ z and then transitivity gives us x ∼ y. But then we can show Cx = Cy:
z ∈ Cx =⇒ z ∼ x =⇒ z ∼ y =⇒ z ∈ Cy by transitivity, and vice versa.

Conversely, we wish to construct an equivalence relation from a partition. Let {Si} be
a partition of S. We can define x ∼ y if x, y are in the same Si. By default, we have x ∼ x
and x ∼ y =⇒ y ∼ x, so this is both reflexive and symmetric. It is also easy to see that
if x ∼ y and y ∼ z, i.e., x, y ∈ Si and y, z ∈ Si, then x, z ∈ Si =⇒ x ∼ z, so transitivity
holds.

5.2 Specifying to Groups

It’s time to apply all this to the context of groups. We can define a natural equivalence
relation on G that is induced by a subgroup H ≤ G.

Definition 5.9 (Equivalence relation induced by subgroup). Let G be a group, and
H ≤ G subgroup. For a, b ∈ G, we say a ∼ b iff ∃h ∈ H such that a = bh, i.e.
b−1a ∈ H.

From now on, whenever we have an equivalence relation ∼, we are referring to this one, with
respect to whatever subgroup we have at hand. We see that this naturally generalizes our
favorite congruence relation; we’ll illustrate this with the ≡ (mod 2) case.

Example 5.10 (Congruence mod 2 via subgroup 2Z)
We have H = 2Z ≤ Z under +. The above relation becomes a ∼ b ⇐⇒ −b+ a ∈ 2Z,
which is true when 2 | a− b, i.e. a ≡ b (mod 2).

From now on, we’ll call the equivalence relation induced by H as “congruence modulo H.”
We already saw that congruence modulo n for some n ∈ Z is just a specific case of this. In
general, when we say modulo H, we are basically saying “send every h ∈ H to the identity.”
Indeed, for any h ∈ H, we have h ∼ e trivially from the definition.

To be thorough, though, we’ll actually show that this congruence modulo H relation is
an equivalence relation.

Proposition 5.11

Let H ≤ G be a subgroup. Then, congruence modulo H in G is an equivalence relation.

Proof. We’ll check the three conditions for equivlaence relations one at a time.
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1. (Reflexivity) We know a ∼ a for any a ∈ G as a = a ∗ e and e ∈ H.

2. (Symmetry) If x ∼ y for x, y ∈ G, then x = yh for some h ∈ H. But then xh−1 =
(yh)h−1 = y, and as h−1 ∈ H, we get y ∼ x.

3. (Transitivity) Suppose x, y, z ∈ G satisfy x ∼ y and y ∼ z. Then, x−1y, y−1z ∈ H, so
the product (x−1y)(y−1z) = x−1z ∈ H as well, which means x ∼ z.

The conclusion follows.

5.3 Cosets

Let’s investigate our equivalence classes a bit more. We just proved that congruence modulo
H is indeed an equivalence relation, and we proved earlier that any equivalence relation
induces a partition via its equivalence classes. We’re going to call our equivalence classes a
special name, the coset.

To be more explicit in the construction, start with some g ∈ G. Then, we have the
equivalence class of g is

g = {b ∈ G | b ∼ g}
= {b ∈ G | b = gh for all h ∈ H}.

So g is obtained by multiplying g to every element in H. We will use a convenient shorthand
notation for this: gH := g.

Definition 5.12 (Left coset). g ∗H (usually the ∗ is omitted) is the left coset of g in
H.

Remark 5.13. We specify “left” because our group G is not necessarily abelian, so the
set Hg = {b ∈ G | b = hg for all h ∈ H} may be different from gH. For most of this
class, though, we won’t really care about this distinction, as long as we’re consistent
with the choice of our cosets (left or right).

Remark 5.14. The coset “represented by” the identity is simply eH = H, which is
a (sub)group! And likewise, for any h ∈ H, hH = H. However, any other coset gH
(g /∈ H) is not a subgroup, as the identity doesn’t exist in gH! (It also doesn’t have
closure of products or inverses in the general case.)

If this is hard to believe, test this out for congruence modulo n. In Z/5Z, the set of all
integers congruent to 2 mod 5 does not form a subgroup of Z, as 0 /∈ 2 + 5Z. Furthermore,
if a, b ∈ 2 + 5Z, then a+ b ∈ 4 + 5Z ̸= 2 + 5Z, and −a ∈ 3 + 5Z.
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5.4 Proving Lagrange’s Theorem

Now that we’ve set up all of our necessary language, we will go towards proving Lagrange’s
Theorem (Theorem 5.1).

We know that the equivalence classes modulo H partition set set G. We could write
G =

⋃
g∈G gH, but that would be unnecessarily repeating lots of cosets (we showed that if

g2 ∈ g1H, then g1H = g2H). So instead, we’ll choose one representative for each distinct
coset such that we can write G as a disjoint union:

G =
⊔
i∈I

giH.

Again, {giH | i ∈ I} are the distinct left cosets.

Example 5.15 (Clarifying above with ≡ (mod 5))

For congruence modulo 5, we can take the gi’s to be 0, 1, 2, 3, 4.

We don’t care too much about the choice of representatives; what we care about more is
the number of distinct left cosets we have. This is exactly the cardinality of I, which we’ll
denote [G : H].

Definition 5.16 (Index of H). The index of a subgroup H in G is [G : H] := |I|, the
number of elements in I, i.e. the number of distinct left cosets.

Example 5.17

As in the above example, we can take our distinct left cosets modulo n to be 0, 1, . . . ,
n− 1, so [Z : nZ] = n.

Lagrange’s Theorem will follow immediately from the following lemma:

Lemma 5.18

All left cosets of H in G have the same number of elements.

Proof. It suffices to show that any left coset has the same number of elements as H, as then
we can have |giH| = |H| = |gjH| for any gi, gj ∈ G. We will define a map

f : H → gH

h 7→ gh.

Consider the map

F : gH → H

z 7→ g−1z.
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We have f is a bijection with inverse F , as (f ◦F )(z) = f(g−1z) = g(g−1z) = z and likewise
(F ◦ f)(h) = h. Since f is a bijection, we muat hve |H| = |gH|, as desired.

Well, each left coset has size |H|, and there are [G : H] left cosets, and the left cosets
form a partition of G, so we immediately get

Theorem 5.19 (“Counting formula”)

For H ≤ G subgroup, |G| = [G : H] · |H|.

In particular, since [G : H] is an integer by definition, we get

Corollary 5.20 (Lagrange’s Theorem)

|H| | |G|.

There are many, many applications of this theorem (try to prove Fermat’s Little Theorem
using Lagrange’s!) but here’s one application:

Corollary 5.21 (Order of element divides order of group)

If a ∈ G, then |a| | |G|.

Proof. We already know ⟨a⟩ ≤ G. We know |a| = | ⟨a⟩ |. By Lagrange’s, | ⟨a⟩ | | |G|, and
the result follows.

6 09/21 - Quotient Groups

6.1 Groups of Prime Order

A big question in group theory is: Can we classify all groups of order n for any given n? A
lot of the things we’ll be doing in this class works towards classifying these groups as best
as we can. To cap off our work from last time, we have our first big taste of what we can
do with the following result.

Proposition 6.1

Every finite group of prime order is cyclic.

This, coupled with Theorem 4.1, tells us that any two groups of order p (where p is prime)
are isomorphic. In other words, there is a unique group of order p up to isomorphism.
(And even better, it’s abelian!) This is pretty remarkable: we started with just the three
group axioms, then specified the number of elements in our set, and somehow restricted
ourselves to one group.
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Proof. (of Proposition) Let G be a group with |G| = p prime. Let a ∈ G be a non-identity
element, which must exist as |G| = p ≥ 2. Note that as a ̸= e, |a| > 1. We also know ⟨a⟩ is
a subgroup with | ⟨a⟩ | = |a|. By Lagrange’s Theorem, we have |a| = | ⟨a⟩ | divides |G| = p,
and as |a| > 1, it must follow |a| = p. But then | ⟨a⟩ | = p = |G|, so ⟨a⟩ = G and G is
cyclic.

It seems a bit much, though, to think that we brought up the whole theory of left cosets
and such just to prove Lagrange’s Theorem. Luckily, our work has not been in vain. We’ll
try to take the set of left cosets of a given subgroup and attempt to give it a group structure,
but this requires a bit of care.

6.2 Group Structure on Left Cosets

We are entering the notion of quotient groups. This is Section 3 in Dummit and Foote.

As a motivating example, consider the left cosets of nZ ⊂ Z. We talked about last time
that the left cosets of nZ in Z are 0, 1, . . . , n− 1 (recall a = a+nZ is the set of all integers
equivalent to a (mod n)). Note that these cosets partition Z, and any other coset a is equal
to one if these n cosets.

These left cosets form a group! We call this Z/nZ, where we define the operation + as
a + b = a+ b. One can check that this is well-defined, and it agrees with our usual notion
of addition modulo n. (What is 12 + 27 mod 7? What is 12 + 27 in Z/nZ?)

Remark 6.2. Note the name quotient group, and that the / indicates we’re taking
some kind of quotient. This is not coincidental at all – in fact, this is why the integers
mod n are notated as such. Likewise, the pedagogically correct way of thinking about
Z/nZ is by thinking of its elements as equivalence classes, rather than as element
representatives.

In general, we denote the set of left cosets by this quotienting symbol: for a subgroup H ≤ G
in group G

G/H = {gH | g ∈ G}
is the set of left cosets of H. Here is our big question:

Can the left cosets of H in G form a group?

Well, in order for a set to be a group, we need a binary operation. Let’s define it in the
convenient way: (g1H) ∗ (g2H) = (g1g2)H, where the g1g2 uses the operation of G. This
aligns with what we did for Z/nZ, as we defined a+ b = a+ b.

Turns out that the answer to this question is not always. But there is a nice way to
characterize the condition that will make the left cosets have a group structure.

6.3 Normal Subgroups
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Definition 6.3 (Normal subgroups). Let N ≤ G. If gN = Ng for all g ∈ G, then N is
a normal subgroup of G. We write N ⊴ G.

The Ng is the right coset of g in H (see Remark 5.13).

This condition may seem very arbitrary, but one can work carefully to show that this
condition is exactly what we need to make sure G/H is a group. Maybe this will be covered
in section? But believe us for now.

Example 6.4 (nZ is normal)

nZ is a normal subgroup of Z. Likewise, the quotient Z/nZ is a group, as we know very
well.

Fact 6.5. This comes for free from the definition: every subgroup of an abelian group
is normal. Another that comes for free: the center Z(G) ⊴ G.

Exercise 6.6. Hopefully harmless: show {e} ⊴ G and G ⊴ G. (Work through the
definition.)

We have a few examples of normal subgroups here, but an equally enlightening way of
illustrating a concept is through non-examples.

Example 6.7 (Non-example of normal subgroup)

Let G = D8 and s be some reflection. Is ⟨s⟩ = {e, s} a normal subgroup? We have

r ⟨s⟩ = {rs, r}
⟨s⟩ r = {sr, r},

but as we know rs = sr−1 ̸= sr, these two cosets are not the same, so ⟨s⟩ is not normal.

Although it is nice that this normality condition completely encapsulates what we need for
G/H to be a group, the downshot is that from our definition alone, it’s hard to verify that
a subgroup is normal. We’ll try to rectify this a little with the following:

Theorem 6.8

H ⊴ G iff ∀h ∈ H and ∀ g ∈ G, ghg−1 ∈ H.

Remark 6.9. Going from h to ghg−1 is called conjugation by g. This is a concept
that will come up again.
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Proof. We show implication in both directions. First, assume H ⊴ G. Let h ∈ H and
g ∈ G. We want to show ghg−1 ∈ H. By normality of H, we know gH = Hg, so gh = h′g
for some h′ ∈ H. Then,

(gh)g−1 = (h′g)g−1 = h′ ∈ H.

For the other direction, suppose conjugation on an element in H always stays in H. Let
g ∈ G. We want to show gH = Hg. We will do this by showing inclusion in both directions.
Let a ∈ gH, so a = g · b for some b ∈ H. Then, we can write

a = gb = (gbg−1)g ∈ Hg

since gbg−1 ∈ H by our assumption. Thus, gH ⊆ Hg. Showing the reverse inclusion
(Hg ⊆ gH) follows a similar argument.

Just like how we can take any subset of G and construct its centralizer, we can take any
subset and construct its normalizer. This serves as a natural generalization of our notion
of the normal subgroup.

Definition 6.10 (Normalizer). Let A ⊆ G. The normalizer of A in G is NG(A) =
{g ∈ G | gA = Ag}.

Fact 6.11. N ⊴ G ⇐⇒ NG(N) = G. (Convince yourself that this is really an
equivalent formulation of the normality condition!)

Example 6.12 (SLn(R) ⊴ GLn(R))
Let G = GLn(R) and H = SLn(R) ≤ G. We can check that H ⊴ G. Let A ∈ SLn(R)
and B ∈ GLn(R). Then,

det(BAB−1) = det(B) det(A) det(B)−1 = det(A) = 1,

so BAB−1 ∈ SLn(R) and thus H ⊴ G. We can also show that |G/H| = [G : H] = ∞,
as for any A ∈ G, the left coset of A in H contains only matrices of determinant det(A).
Thus, for every nonzero r ∈ R, we need at least one left coset whose elements are all
matrices of determinant r. As |R| = ∞, [G : H] = ∞ as well.

Remark 6.13 (Normal subgroups as homomorphism kernel). This also plays on Prob-
lem 5 of PSet 2. Consider the homomorphism φ : GLn(R) → (R \ {0},×) where
A 7→ detA. We’ve established in the very beginning of class that this is indeed a group
homomorphism. The kernel is the set of all matrices with determinant 1, i.e. exactly
SLn(R). And this subgroup is normal! So we have this interplay between a normal sub-
group and the kernel of a homomorphism. We will see that this is true in the general
case next week.

One more example for normal subgroups (there is no such thing as too many examples!).
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Example 6.14 (Subgroup of rotations is normal)

Consider ⟨r⟩ ≤ D8. We will first show that for any g ∈ D8, grg
−1 ∈ ⟨r⟩. When g ∈ ⟨r⟩,

then as ⟨r⟩ is abelian, this is clearly the case (in fact, then grg−1 = r). Now suppose
g = s. Note that s2 = e =⇒ s = s−1, so srs−1 = srs = (r−1s)s = r−1 ∈ ⟨r⟩.

In the more general case when g = rjs, we want to show (rjs)r(rjs)−1 ∈ ⟨r⟩. One
can verify that (rjs)−1 = s−1r−j = sr−j (in general, (ab)−1 = b−1a−1), so

(rjs)r(rjs)−1 = rjsrsr−j = rjr−1r−j = r−1,

where in the third equality, we use the fact that srs = r−1 from above. Thus, grg−1 ∈ ⟨r⟩
for any g ∈ D8.

Furthermore, our work here immediately gives us the case for any rj. One can show
via induction (or “expanding it out”) that if grg−1 ∈ ⟨r⟩, then (grg−1)j = grjg−1 ∈ ⟨r⟩
as well. This means ⟨r⟩ ⊴ D8.

Let’s explore this a little bit more. What are the left cosets of ⟨r⟩? We have ⟨r⟩ itself, and
then we can consider s ⟨r⟩ = {s, sr, sr2, sr3}. Note that ⟨r⟩ ∪ s ⟨r⟩ = D8 and the two cosets
are disjoint, so these are the only two left cosets. In particular, we have |D8 : ⟨r⟩ | = 2. We
already established that ⟨r⟩ is normal, but we can obtain the same result given |D8 : ⟨r⟩ | = 2
via the following result:

Theorem 6.15 (Subgroup of index 2 is normal)

If H ≤ G such that [G : H] = 2, then H ⊴ G.

Proof. Let g ∈ G. We want to show gH = Hg. If g ∈ H, then gH = H = Hg. If g /∈ H,
then H ̸= gH; more strongly, H ∩ gH = ∅. Likewise, g /∈ H =⇒ H ̸= Hg, so H ∩Hg = ∅.
But since [G : H] = 2, we must have G = H ⊔ gH = H ⊔ Hg which implies gH = Hg.
(Intuitively, [G : H] = 2 means we only have one other coset besides H, but we have two
cosets gH and Hg, so they must be the same coset.)

6.4 Normality is What We Want

I’ve kept claiming that normality is exactly the condition that guarantees G/H has a group
structure, but now we’ll work through the details.

Proposition 6.16

If N ⊴ G, then G/N is a group with the operation ∗ such that (aN) ∗ (bN) = (ab)N .

Proof. This requires us to first show that ∗ is indeed a well-defined binary operation. Again,
we have ∗ is a binary operation G/N × G/N → G/N where (aN, bN) 7→ (ab)N . We need
to make sure this is well-defined, i.e. if aN = cN and bN = dN , then (ab)N = (cd)N (the
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output is not dependent on our choice of representative). This is for sure the hardest part
of establishing that G/N is a group (and where the normality of N comes into play), so I’m
going to save this for last and assume that this operation is well-defined for now.

Associativity of our operation on left cosets follow from associativity in G, as (aN ∗bN)∗
cN = (ab)cN = a(bc)N = aN ∗ (bN ∗ cN). The identity coset is eN = N , and the inverse
of gN is g−1N (check this!).

Now we show that ∗ is well-defined. We will prove this in two ways: the more conven-
tional way, and the one Myrto was alluding to in class.

Proof 1: Suppose aN = cN and bN = dN . We wish to show that (ab)N = (cd)N .
This requires a lemma that allows us to work with this equality between cosets:

Lemma 6.17 (Condition for when cosets are equivalent)

aN = cN ⇐⇒ c ∈ aN .

Proof. First, suppose aN = cN . Then, as e ∈ N , we have ce = c ∈ cN = aN . For the
reverse implication, suppose c ∈ aN . Then, c = an for some n ∈ N . We wish to show that
aN = (an)N .

This we can do by showing inclusion in both directions. Take any an′ ∈ aN (n′ ∈ N).
We have n, n′ ∈ N =⇒ n−1n′ ∈ N , so an′ = (an)(n−1n′) ∈ (an)N . For the reverse
inclusion, again take any (an)n′ ∈ (an)N (n′ ∈ N). By closure of products in subgroups,
nn′ ∈ N , so (an)n′ = a(nn′) ∈ aN .

Returning back to proving well-definedness, we now wish to show (ab)N = (cd)N . By
the lemma, it suffices to show that cd ∈ (ab)N . But from aN = cN and bN = dN , the
lemma tells us that c ∈ aN , d ∈ bN , i.e. ∃n1, n2 ∈ N such that c = an1, d = bn2. Then,
cd = (an1)(bn2) = a(n1b)n2. Normality of N tells us that Nb = bN , so ∃n3 ∈ N such that
n1b = bn3. This gives us

cd = a(n1b)n2 = a(bn3)n2 = (ab)(n3n2) ∈ (ab)N,

as desired.

Proof 2: We can bypass the concern on choosing a representative by defining the ∗
without any representative! Given sets A and B, we will define A ·B := {ab | a ∈ A, b ∈ B}.
We claim that our operation is equivalent to this “product” between sets. It suffices to show
that aN · bN = (ab)N .

We will show inclusion in both directions. Any element in aN can be expressed as an1

for n1 ∈ N , and likewise bn2 for bN (n2 ∈ N). Their product is (an1)(bn2) = a(n1b)n2.
By normality of N , Nb = bN , so n1b = bn3 for some n3 ∈ N , which means our product is
a(bn3)n2 = (ab)(n3n2). Since N is a subgroup, n3n2 ∈ N , so (an1)(bn2) ∈ (ab)N .

The reverse inclusion is more straightforward: any element in (ab)N can be expressed
as (ab)n for some n ∈ N , but we can rewrite that as (ae)(bn). e ∈ N since N is a subgroup,
so (ae)(bn) ∈ aN · bN . Thus, aN · bN = (ab)N , and as this set “product” is well-defined,
so is our operation ∗ on left cosets.
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Remark 6.18. The proof for showing our operation is well-defined is admittedly a bit
clunky. It is enlightening in the sense that it shows you exactly when and why our
normality condition is necessary to make sure G/N is a group, but if you’re getting
bogged down by the details, just taking well-definedness for granted and moving on
won’t hurt for the time being.

Exercise 6.19 (Sanity check). What is the order (number of elements) of the group
G/N? Do we have notation for this already?

7 Week of 09/26 - Isomorphism Theorems

7.1 Statement of Theorems

Professor Mavraki was at a conference for Arithmetic Geometry in Heidelberg, so she pre-
recorded these lectures. I never got around to transcribing the lectures, but for complete-
ness, I will state the isomorphism theorems here. A Google search of “Group Isomorphism
Theorems” will produce plenty of good resources explaining and proving these theorems.

Theorem 7.1 (First Isomorphism Theorem)

If φ : G→ H is a group homomorphism, then kerφ ⊴ G and G/ kerφ ≃ Imφ.

Theorem 7.2 (Third Isomorphism Theorem)

Suppose K ⊆ H ⊆ G and K ⊴ G, H ⊴ G. Then, K ⊴ H, H/K ⊴ G/K, and

G/K
/
H/K ≃ G/H.

Example 7.3

We have 4Z, 2Z are both normal subgroups of Z. (Reminder that any subgroup of an
abelian group is normal.) One can work through that Z/2Z ≃ (Z/4Z)/(2Z/4Z).

Theorem 7.4 (Second Isomorphism Theorem)

Let G be a group, H ⊆ G a subgroup and N ⊴ G a normal subgroup. Then, (a)
HN ⊆ G is a subgroup, (b) N ⊴ HN is a normal subgroup, (c) H∩N ⊴ H is a normal
subgroup, and (d) we have an isomorphism of quotient groups

HN/N ≃ (H ∩N)/H.
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As a diagram, we have the following inclusion of groups. The Second Isomorphism Theorem,
also known as the Diamond Theorem because of the diamond below, states that the two
quotient groups obtained from the two normal subgroup inclusions in the diamond are
isomorphic.

G

HN

N H

H ∩N

normal

normal

8 10/03 - Group Actions

This is, in my opinion, the pedagogically correct way of thinking about groups. We’ll give
a motivating example. Consider D10, the dihedral group of order 10. We always described
of this group as the symmetries of the pentagon. This is kind of vague, though. What are
the symmetries?

If you go back to the diagrams in Example 1.4, you may notice that this question actually
pokes at something extremely subtle. It’s easiest in the beginning to simply describe the
elements of D10 as the different configurations of the pentagon, which is what we did in
class, but this makes no sense. How do we combine two configurations under an operation?

What we’re actually doing is we’re taking the actions as elements. The rotation r is not
the pentagon itself with relabeled vertices, but it is the action itself. This is weird, because
if we think of the elements of our group as nouns, then we’re taking these actions (rotating,
reflecting), which are a priori verbs, and then treating them as nouns.

If this explanation was a bit esoteric, here’s another perspective. Consider D10 as a
subset of S5 instead, so remove D10 from its geometric interpretation. Now, since S5 is the
group of permutations on {1, 2, 3, 4, 5}, we have that D10 is acting on the set with just more
restrictions.

In any case, we can understand a group better by looking at how it (inter)acts with a
set A.

Definition 8.1 (Group action). Let G be a group and A a set. A group action of G
on A is a map

φ : G× A→ A

(g, a) 7→ φ(g, a) ∈ A

such that
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1. (Associativity) φ(g1, φ(g2, a)) = φ(g1g2, a)

2. (Identity) φ(e, a) = a for all a ∈ A.

We say that A is a G-space if there exists an action of G on A. The action is written
G↷ A.

Let’s break down these axioms a little bit more. The first axiom basically encapsulates asso-
ciativity! For notational convenience, we will denote group actions using the · multiplication
sign, so g · a := φ(g, a). The first axiom is telling us

g1 · (g2 · a) = (g1 ∗ g2) · a.

(This looks sort of similar to how scalar multiplication works on vector spaces, if you’re
familiar with them.)

The second axiom encapsulates the identity action, which naturally is associated with
the identity element. Using the · notation, this means that e · a = a for all a ∈ A. Seems
reasonable enough.

It’s important to remember though that A need not be a group! In the case of Sn,
the permutations are acting on the set {1, 2, . . . , n}, which is not a group (we haven’t even
defined an operation on this set).

Exercise 8.2. Convince yourself that the following is true: the binary operation in a
group G is a group action in disguise, where G is acting on itself. (Consequently, one
can see that group actions is a more powerful and general formulation of how we’ve
dealt with groups thus far.)

Example 8.3 (Conjugation is a group action)

From above, we have that multiplication in a group is a group action, where the group
is acting on itself. But there can be many group actions for a given group and set!
Conjugation is another example of an action G↷ G. We define the action via

φ : G×G→ G

(g, a) 7→ gag−1.

Checking that this is indeed a group action is just a matter of checking the two axioms.
For associativity, φ(g1, φ(g2, a)) = φ(g1, g2ag

−1
2 ) = g1(g2ag

−1
2 )g−1

1 = g1g2a(g1g2)
−1 =

φ(g1g2, a), whew. For identity, φ(e, a) = eae−1 = a, easy.

Example 8.4 (Symmetric group acts on {1, 2, . . . , n})
Thinking of Sn as the group of permutations acting on A := {1, 2, . . . , n}, we have
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(literally in the name) that Sn ↷ {1, 2, . . . , n}. The action is defined

φ : Sn × A→ A

(σ, i) 7→ σ(i).

We check that this satisfies both axioms. The easier one is the identity: letting id be the
identity permutation, we have id ·i = id(i) = i. For associativity, we have the following
equalities: φ(σ1φ(σ2, i)) = σ1 · (σ2(i)) = σ1(σ2(i)) and φ(σ1 ◦ σ2, i) = (σ1 ◦ σ2)(i) =
σ1(σ2(i)), so they must be equal.

Example 8.5 (GLn(R) acts on Rn)

We have an action GLn(R) ↷ Rn where the map GLn(R) × Rn → Rn maps (M, v⃗) 7→
Mv⃗. Check that this is a valid group action!

8.1 Stabilizers

As we now allow groups to not only interact with itself, but also with sets in general, some
interesting mathematical plays arise. To discuss this, we’re going to introduce some more
definitions.

Definition 8.6 (Kernel of a group action). The kernel of an action φ : G × A → A
defined to be the set of group elements of the group G that fix all the elements of A
under the considered action φ:

kerφ = {g ∈ G | g · a = a ∀ a ∈ A}.

A slightly weaker notion only requires fixing a specified element in our set.

Definition 8.7 (Stabilizer). Given an element a ∈ A, the stabilizer of a is the set of
all group elements which fix a under the group action:

Stab(a) := {g ∈ G | φ(g, a) = a}.

Exercise 8.8. Check the following are true (this follows from the definition):

• ker ≤ Stab(a),

• kerφ =
⋂

a∈A Stab(a).

It would be nice if Stab(a) and kerφ were more than just sets. Lucky for us, they inherit a
(sub)group structure:
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Lemma 8.9 (Stabilizer and Kernel are subgroups)

The stabilizer of a ∈ A is a subgroup of G. Likewise, the kernel of a group action is
also a subgroup.

Proof. First, as e · a = a, e ∈ Stab(a). It is closed under inverses: if g ∈ Stab(a), then
g ·a = a, so then we have a = (g−1 ∗g) ·a = g−1 ·(g ·a) = g−1 ·a, voila. It is also closed under
products: if g1, g2 ∈ Stab(a), then g1 · a = g2 · a = a, so (g1 ∗ g2) · a = g1 · (g2 · a) = g1 · a = a.

Proving the kernel is a subgroup can be done directly in a similar fashion to the above,
or one can take Claim 4.5 (intersection of subgroups is a subgroup) and get the result
immediately.

Definition 8.10 (Faithful action). If kerφ = {e}, then we say that the action is
faithful.

8.2 Orbits

Very closely linked to the notion of stabilizers is the notion of orbits. This is kind of the
opposite of the stabilizer: whereas the stabilizer of an element keeps only that which fixes
it, the orbit encapsulates all the different “places” a group action can send our element.

Definition 8.11 (Orbit). For an element a ∈ A, the orbit of a under an action G↷ A
is

O(a) = {g · a | g ∈ G}.

Note that since g · a ∈ A, O(a) ⊆ A.

Exercise 8.12. (Review) The stabilizer and orbit both take in an element of the set
as its argument, say a ∈ A. Stab(a) and O(a) are both sets. Where do they live? In G
or in A?

Definition 8.13 (Transitive action). An action is transitive if the entire set is the
orbit of some element, i.e. for some a ∈ A, A = O(a). Equivalently, if b ∈ A, then
b = g · a for some g ∈ G.

8.3 Gaining Familiarity with Actions

We’ll use the conjugation action as our case study to review everything that’s been going
on. Reminder that conjugation is a group action G↷ G where g · a = gag−1.
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Fix some a ∈ G. Then, we have

Stab(a) = {g ∈ G | g · a = a}
= {g ∈ G | gag−1 = a}
= {g ∈ G | ga = ag}
= CG(a).

One can also show that

kerφ =
⋂
a∈G

Stab(a) =
⋂
a∈G

CG(a) = Z(G),

the center of our group G. Aha, so it turns out that the center/centralizer is not totally out
of the blue, it just took some time to justify where they came from.

When is the conjugation action faithful? Recall that an action is faithful if kerφ = {e},
so it is faithful iff Z(G) = {e}. Thus, from one of the psets, we know that the action is
faithful in the group D10.

Finally, we’ll see what the orbits look like under this action. For some a ∈ G, we have

O(a) = {g · a | g ∈ G} = {gag−1 | g ∈ G}.

We call this the conjugacy class of a. This will show up again in full force in a few weeks!

Example 8.14 (Exercises via conjugation)

Summarizing, we have the following for our conjugation action. For everything below,
we fix some a ∈ G.

• Stab(a) = CG(a)

• kerφ = Z(G)

• The action is faithful iff Z(G) = {e}

• O(a) is the conjugacy class of a

Example 8.15 (Transitive action)

Consider the action S3 ↷ {1, 2, 3} where σ · i := σ(i). This action is transitive, as
O(1) = {σ(1) | σ ∈ S3} = {1, 2, 3}. (If you don’t believe, for every i ∈ {1, 2, 3}, find a
σ ∈ S3 such that σ(1) = i.)

As an addendum, note that kerφ = {σ ∈ S3 | σ(i) = i ∀ i ∈ {1, 2, 3}} = {id}, so the
action is also faithful!

8.4 Cayley’s Theorem

Sometimes when a specific mathematical object seems a bit unmotivated, it’s enlightening
to see how and why the object was first constructed. The story with groups is pretty simple.
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The first examples of groups were symmetric groups only, and they were dealt with very
tangibly (e.g. using matrices). It was only until later when some dudes were like “wait
we can make this stuff a lot more general, so we can apply our knowledge of permutation
groups in other contexts.” This process of abstraction has transformed our knowledge of
group theory into the material that we’ve been covering in this class.

So it seems like through abstraction, we’ve uncovered so many “new groups,” or in
general new information about groups that we couldn’t have gleaned just by studying the
symmetry groups. But is this really the case? This is where the story takes a surprising
turn.

Theorem 8.16 (Cayley’s Theorem)

Let G be a finite group with order n. Then, G is isomorphic to a subgroup of Sn.

This result tells us that although the abstraction is useful for having a precise language
when discussing groups, it turns out that everything we need in group theory lies in the
symmetry groups.1 This may seem shocking, but it actually shouldn’t: we already knew
that groups were objects designed to encapsulate symmetries. So it makes perfect sense
that any group must be a subgroup of a symmetric group, since it encapsulates particular
symmetries of a set.

The following is a very nice way of thinking about group actions. In fact, this perspective
– seeing group actions as bijections on your set that somehow respect the group structure
– is the starting point of representation theory.

Lemma 8.17

We have a bijection between the group actions φ : G× A → A and the set of of group
homomorphisms ψ : G→ SA, where we define

SA := {τ : A→ A | τ bijection}.

Proof. We will provide constructions in both directions. First, let φ : G × A → A be a
group action of G on A. Denote φg : A → A as the map sending a 7→ g · a ∈ A. Note
that φg is a bijection, since φg−1 ◦ φg(a) = g−1 · (g · a) = a. Thus, we can consider the map
ψ : G→ SA given by g 7→ φg. A priori it is not a group homomorphism, just a map between
sets. Yet it is clear from the group action properties that φg ◦ φh = φgh, so ψ is indeed a
group homomorphism.

The other direction, I am now realizing, is covered at the beginning of the next lecture,
so I invite the reader to go to the (bottom of the) next page!

To close out this lecture, we will prove Cayley’s Theorem very quickly:

Proof. Let G be a finite group, and consider the action G ↷ G of left multiplication. We
have a group homomorphism ψ : G→ SG ≃ S|G|. It suffices to show ψ is injective. But this

1At least, for finite groups.
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is clear from the group action given by left multiplication: if g · x = h · x for any (let alone
all) x ∈ G, then g = h by existence of inverses. Hence, ψ is injective, so G embeds into S|G|
as a subgroup.

9 10/05 - Powerful Applications of Group Actions

9.1 More with Group Actions

We’ll practice a bit with faithful and transitive actions. For each example, we’ll determine
whether it is a group action, and if it is, whether it is faithful and/or transitive.

Exercise 9.1. Let G = (Z,+) and A = Z. 1) Our group action G ↷ A is defined by
g · a := g + a. 2) Define g · a := ga (multiplication).

Example 9.2

Let G = (Z,+) and A = Z, and our group action G↷ A is defined by g ·a := g+a. The
action by 0 is the identity, and associativity follows from associativity of addition. It is
faithful, since 0 is the only integer n such that n · a := n + a = a. It is also transitive,
as O(0) = Z.

If we take the same group and set but define G↷ A via g · a := g · a, then this is no
longer an action as 0 is the identity of G = (Z,+) but the action by 0 does not preserve
the element, i.e. 0 · x = 0x = 0 ̸= x for x ̸= 0.

Last time, we stated a bijection

{group actions φ : G× A→ A} ↔ {group hom ψ : G→ SA}.

Recall SA = {τ : A→ A | τ bijective}. Let’s define the bijection in both directions.

First, start with a group action φ : G × A → A. We can define a corresponding
ψ : G→ SA where ψ(g) = σg : A→ A is defined as σg(a) := φ(g, a). One can check that σg
is a bijection from A→ A, and ψ is a group homomorphism.

In the reverse direction, start with some group homomorphism ψ : G → SA. We can
construct a corresponding group action φ : G × A → A where φ(g, a) := ψ(g)(a). We can
quickly check that this is a group action. First, e · a = ψ(e)(a) = idSA

(a) = a. Associativity
comes from

g1 · (g2 · a) = g1 · (ψ(g2)(a)) = ψ(g1)(ψ(g2)(a))

= (ψ(g1) ◦ ψ(g2))(a) = ψ(g1g2)(a)

= (g1g2) · a,

where the second-to-last equality follows from ψ being a group homomorphism.
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9.2 Orbit-Stabilizer Theorem

After developing all of this stuff about orbits, stabilizers, etc. it would be a shame if the
only thing we did with them was prove Cayley’s Theorem. Lucky for us, there is a lot more
at store.

Here’s the statement of the Orbit-Stabilizer Theorem. Recall that [G : H] is the index of
H, i.e. the number of cosets of H in G.

Theorem 9.3 (Orbit-Stabilizer Theorem)

If G↷ A and a ∈ A, then |O(a)| = [G : Stab(a)]. Equivalently, for finite G,

|O(a)| · | Stab(a)| = |G|.

Exercise 9.4. Use the counting formula to show that |O(a)| = [G : Stab(a)] and
|O(a)| · | Stab(a)| = |G| are equivalent for finite G. Note that the former equation is
true even for G infinite!

Proof. If we wish to show that |O(a)| = [G : Stab(a)], it suffices to construct a bijection
between O(a) (a set) and the set of cosets of Stab(a) in G. Denote G/ Stab(a) as the set
of left cosets of Stab(a) in G (note that this is not necessarily a group, as Stab(a) is not
necessarily normal). We define a bijection

f : O(a) → G/ Stab(a)

g · a 7→ g · Stab(a).

We first need to verify that f is well-defined. Let g1, g2 ∈ G and a ∈ A, and suppose
g1 ·a = g2 ·a. We want to show that g1 Stab(a) := f(g1 ·a) = f(g2 ·a) =: g2 Stab(a). Taking
the action of g−1

1 on both sides, we have

a = e · a = (g−1
1 g1)(a)

= g−1
1 · (g1 · a) = g−1

1 · (g2 · a)
= (g−1

1 g2) · a,

so g−1
1 g2 ∈ Stab(a), which means g2 ∈ g1 Stab(a). Using Lemma 6.17, this tells us that

g1 Stab(a) = g2 Stab(a) as desired.

Now we show that f is a bijection. First, we prove injectivity: suppose f(g1·a) = f(g2·a).
By definition, g1 Stab(a) = g2 Stab(a), so g

−1
1 g2 ∈ Stab(a), so (g−1

1 g2) · a = a. Taking the
action of g1 on both sides and exploiting associativity, we get g2 ·a = g1 ·a. For surjectivity,
given any g · Stab(a) ∈ G/ Stab(a), we have f(g · a) = g · Stab(a), simple enough.

9.3 Actions Induce Equivalence Relations

We mentioned before (when proving Lagrange’s Theorem) that an equivalence relation gives
a partition via its equivalence classes. Conversely, we also saw that a partition induces an
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equivalence relation: say any two elements are equivalent if they belong in the same subset
in the partition. (Check that this is actually an equivalence relation!) It turns out that
we can also induce equivalence relations from group actions, which is super neat, because
then we can jump from group actions, to equivalence relations, to partitions, which gives us
insightful information on the elements of a group.

In particular, we will see that there’s a convenient way of partitioning a group via special
equivalence classes. This is useful because although counting the number of elements in a
group may be difficult, it’ll be easier to count the number of elements in each equivalence
class, so then we can just add up the sizes of each class to get the order of the group.

We start with a group action G↷ A. We induce an equivalence relation A where a ∼ b
iff a ∈ O(b). We check the equivalence relation axioms:

• Reflexive: since a ∈ O(a) (as e · a = a), a ∼ a

• Symmetric: a ∼ b =⇒ b ∼ a as if a ∈ O(b), then a = g · b for some g ∈ G, which
means g−1 · a = g−1 · (g · b) = (g−1g) · b = b.

• Transitive: if a ∼ b (a = g1 · b for some g1 ∈ G) and b ∼ c (b = g2 · c for some g2 ∈ G),
then a = g1 · (g2 · c) = (g1g2) · c ∈ O(c), so a ∼ c.

Well, we mentioned that equivalence classes form a partition on our set. Take any a ∈ A.
Then, the equivalence class of a, denote a, is by definition {b ∈ A | b ∈ O(a)} = O(a). So
the equivalence classes are just the orbits of the set elements!

Using more of our knowledge about equivalence classes and partitions, these equivalence
classes must partition our set A. In other words, we can take some subset of representatives
{ai | i ∈ I} (I is our indexed set) such that

A =
⊔
i∈I

O(ai).

Taking the cardinality on both sides,

|A| =
∑
i∈I

|O(ai)|. (1)

So somehow, we’re able to count the number of elements in our set by looking at the distinct
orbits. This becomes even nicer when we take A to be the group G itself and our action
G ↷ G to be the conjugation action. (Recall for g ∈ G, a ∈ G = A, g · a := gag−1.) This
is the premise of the next section.

9.4 Class Equation

The following (admittedly intimidating) result is a direct consequence of our above equa-
tion. By conjugacy class, we mean the equivalence class induced by the conjugation action;
explicitly, the conjugacy class of a ∈ G is {gag−1 | g ∈ G}.
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Theorem 9.5 (Class Equation)

Let G↷ G be the conjugation action, and suppose G is finite. Assume that the distinct
conjugacy classes of G disjoint from Z(G) are C1, . . . , Cn, and ai is some element in Ci

for every 1 ≤ i ≤ n. Then,

|G| = |Z(G)|+
n∑

i=1

[G : CG(ai)],

where CG(ai) is the centralizer and Z(G) is the center.

Proof. Recall that for g ∈ G, a ∈ G = A, the conjugation action is defined as g · a :=
gag−1. We saw that any action induces an equivalence relation, and the equivalence classes
are simply the orbits of the group elements. Thus, the conjugacy classes are of the form
O(a) = {gag−1 | g ∈ G}. Applying this to Equation (1), we have

|G| =
m∑
i=1

|O(ai)|,

where O(ai) (1 ≤ i ≤ m) are the distinct conjugacy classes, i.e. distinct orbits. But we
know an equivalent expression of |O(ai)| by the Orbit-Stabilizer Theorem! So we can rewrite

|G| =
m∑
i=1

[G : Stab(ai)].

But for conjugation,

Stab(a) = {g ∈ G | g · a = a}
= {g ∈ G | gag−1 = a}
= CG(a),

so [G : Stab(a)] = [G : CG(a)]. Let C1, . . . , Cm be our distinct conjugacy classes, and WLOG
let C1, . . . , Cn be the classes disjoint from Z(G), and Cn+1, . . . , Cm be the classes with non-
empty intersection with Z(G). Backtracking, note that [G : CG(a)] = [G : Stab(a)] =
|O(a)|. Thus, to get our Class Equation, it suffices to prove that

∑m
i=n+1 |O(ai)| = |Z(G)|.

This will follow from the following lemma:

Lemma 9.6

For a ∈ G, O(a) = {a} iff a ∈ Z(G).

Proof. We have the following equivalent statements:

O(a) = {a} ⇐⇒ gag−1 = a ∀ g ∈ G

⇐⇒ ga = ag ∀ g ∈ G

⇐⇒ a ∈ Z(G).

This shows the two statements are equivalent.
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The rest of the proof falls from the observation that if a ∈ O(b), then O(a) = O(b).
(One can show the inclusion goes in both directions.) Thus, if O(ai) ∩ Z(G) ̸= ∅, we can
take some bi ∈ O(ai) ∩ Z(G) and thus O(ai) = O(bi) = {bi}. Furthermore, every element
in Z(G) must be in some orbit (namely, it’s own), so we can now write our sum as

m∑
i=n+1

|O(ai)| =
m∑

i=n+1

|O(bi)| =
m∑

i=n+1

1 = |Z(G)|,

and the result follows.

10 10/12 - Group Actions Review

10.1 Tackling Combinatorics Problems

One nice upshot of all the things we’ve developed thus far is that they help us solve some
neat combinatorics problems. Let’s look at one classic application of the Orbit-Stabilizer
Theorem: counting the number of rotational symmetries of a cube.

Example 10.1 (Rotational Symmetries of Cube)

Let R be the group of rotational symmetries of a cube. Similar to how we can think of
the dihedral group D2n acting on the set {1, 2, . . . , n} (think of the set as the n vertices
of the n-gon), R can act on the eight vertices of the cube, label {1, 2, . . . , 8}.

WLOG choose the vertex v = 1. We know from the Orbit-Stabilizer Theorem that
|R| = |O(1)|·| Stab(1)|. Consider the orbit ofO(1) = {r·1 | r ∈ R}. It’s not hard to find
a symmetry which maps 1 to any other given vertex v, so in fact O(1) = {1, 2, . . . , 8}
is the whole set. (The action is transitive.) Thus, |O(1)| = 8.

Now we count Stab(1). We know the vertex 1 lies at the intersection of three edges
of the cube. Let the other endpoint of the edges be v1, v2, v3, respectively. Then, we see
that any symmetry fixing 1 in place must rotate the vertices v1, v2, v3, which gives us 3
rotations. Thus, | Stab(1)| = 3, and multiplying gives |R| = 8 · 3 = 24.

Exercise 10.2. Try doing the same thing, but instead let R act on the set of faces of
the cube. Check that you get the same answer for |R|! (Hint: you should end up with
6 · 4.) Do the same likewise for acting on the set of edges of the cube.

For a combinatorial argument not using the Orbit-Stabilizer Theorem, let ℓ1, ℓ2, ℓ3, ℓ4
be the four space diagonals of the cube. Show that any permutation of the ℓi’s gives a
unique rotational symmetry of the cube.

10.2 Unpacking the Class Equation

It’s a scary equation. We’ll spend some time dissecting what’s going on. To restate,

Hahn Lheem Page 45



Math 122: Algebra I 10/12 - Group Actions Review

Theorem 10.3 (Theorem 9.5 restatement)

Let C1, . . . , Cn be the distinct conjugacy classes disjoint from Z(G). Then,

|G| = |Z(G)|+
n∑

i=1

|Ci|

= |Z(G)|+
n∑

i=1

|O(ai)|,

where ai is a representative of Ci.

We’re going to justify why we’re considering |Z(G)| separately from all the other conju-
gacy classes. We could have just gone ahead and summed over all distinct conjugacy classes,
even those intersecting Z(G), but if you work through some examples, you’ll see that the
orbits intersecting Z(G) are pretty stupid. In particular, they’re just the element itself, so
you’re summing a bunch of 1’s. Naturally, the orbits intersecting Z(G) are the orbits of the
elements of Z(G) itself, so we’d be adding |Z(G)| 1’s, hence the |Z(G)| in our sum.

This is clearer when we write it out mathematically:

Lemma 10.4

If Z1, . . . , Zn are the distinct conjugacy classes that intersect the center, then

m∑
i=1

|Zi| = |Z(G)|.

Proof. Choose ai ∈ Zi, so Zi = O(ai). Note that a ∈ O(a) for any a ∈ G. We proved/it
kinda follows from definition that O(ai) = {ai} ⇐⇒ ai ∈ Z(G), so it suffices to show that
ai ∈ Z(G). By assumption, O(ai) ∩ Z(G) ̸= ∅, so ∃ g ∈ Z(G) ∩ O(ai).

Again, any element g is contained in its own orbit, so g ∈ O(g) and g ∈ O(ai), which is
only possible if O(ai) = O(g). But g ∈ Z(G), so O(g) = {g}, which forces ai = g ∈ Z(G).
The conclusion follows.

As a consequence, any conjugacy class disjoint from Z(G) will have order strictly greater
than 1, so in some sense, the class equation divides the sum up into the trivial conjugacy
classes (the classes with just one element, which are counted in |Z(G)|) and the non-trivial
conjugacy classes (with order greater than one).

10.3 Cycle Notation for Permutations

Hands down definitely the best way to write permutations.

Recall that Sn := {f : {1, . . . , n} → {1, . . . , n} | f bijection}. Equivalently, we can think
of Sn as the group of permutations on the set {1, 2, . . . , n}. For instance, if σ ∈ S4 maps
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σ(1) = 1, σ(2) = 3, σ(3) = 4, and σ(4) = 2, then this corresponds to the permutation where
1 goes to 1, 2 goes to 3, etc.

Cycle notation gives us a really pretty way of writing this concisely. We explain via
demonstration: in this case, we can write σ = (1)(2 3 4). The (1) is by itself because it is
fixed. For the cycle (2 3 4), this is indicating that 2 goes to 3, 3 goes to 4, and 4 goes to 2.
In general, (a0 a1 a2 . . . an) is the cycle where ak goes to ak+1 (and an wraps around to a0).
This cycle is an example of an n-cycle, i.e. a cycle with n elements.

Oftentimes, fixed points are omitted from the cycle notation, so in our first example it’d
be completely acceptable (and even preferred) to write σ = (2 3 4).

So, cycle notation basically decomposes any permutation into a product of cycles. Work
through these exercises to get more familiar:

Exercise 10.5. Take σ ∈ S5 where σ(2) = 3, σ(3) = 2, and everything else is fixed.
Write σ in cycle notation!

Exercise 10.6. Describe the permutation τ = (1 2)(3 4) ∈ S4. What is the order of τ?

Exercise 10.7. Suppose (1, 2, 3, 4, 5, 6, 7) 7→ (1, 3, 4, 2, 6, 7, 5), in that order. Write σ
in cycle notation.

Thinking of these permutations as bijective functions, we can compose two permutations
together. Suppose we take the two 2-cycles (i.e. transpositions, since we’re just swapping
two elements) σ1 = (1 2) and σ2 = (1 3). Then, σ1 ◦σ2 first applies the permutation σ2, then
σ1. We work in that order: σ2(1) = 3, σ2(2) = 2, and σ2(3) = 1. Then, we have

σ1(1) = σ1(σ2(3)) = 2

σ1(2) = σ1(σ2(2)) = 1

σ1(3) = σ1(σ2(1)) = 3,

so σ1 ◦ σ2 maps 3 7→ 2, 2 7→ 1, and 1 7→ 3. It’s a cycle! In particular, σ1 ◦ σ2 = (1 3 2).

I mentioned this earlier, but I’ll make it explicit:

Definition 10.8 (Transposition). A 2-cycle is called a transposition.

The following statements are true, and perhaps a bit clunky to prove rigorously, but in this
case I think as long as you convince yourself that these are true, then you’re good to go.

Fact 10.9. Disjoint cycles commute, e.g. (1 2)(3 4) = (3 4)(1 2).

Fact 10.10. Any permutation σ ∈ Sn can be written as a product of disjoint cycles,
called the cycle decomposition of σ, e.g. (1 2)(1 3) = (1 3 2).
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10.4 Conjugacy Classes for Permutations

We’re now going to investigate the conjugacy classes of the symmetric group Sn. First, a
definition:

Definition 10.11 (Cycle Type). If σ ∈ Sn is a product of disjoint cycles of lengths
n1, n2, . . . , nr where n1 ≤ · · · ≤ nr and n1 + · · ·+ nr = n, then we say that σ has cycle
type (n1, n2, . . . , nr).

The cycle type is sort of like the skeleton of our permutation, as it tells us how the permu-
tation decomposes into cycles.

Exercise 10.12. What is the cycle type of the identity permutation? Of a transposi-
tion?

The reason why we bring up the notion of cycle type is that it serves as a useful invari-
ant under conjugation. The conjugation actions preserves this “skeleton”; conjugation
preserves the cycle type. More explicitly,

Proposition 10.13

Let σ, τ ∈ Sn. Suppose that the cycle decomposition of σ is

σ = (a1 . . . ak1)(b1 . . . bk2) · · · .

Then,
τστ−1 = (τ(a1) . . . τ(ak1))(τ(b1) . . . τ(bk2)) · · · .

Even better, the converse is also true:

Proposition 10.14

Two elements of Sn are conjugate if and only if they have the same cycle type.

Example 10.15

Let σ1 = (4 5)(1 2 3) and σ2 = (4 5)(1 3 2), both in S5. Both have cycle type (2, 3), so
by Proposition 10.14, they must be conjugates. Comparing σ1 and σ2, let τ(4) = 4,
τ(5) = 5, τ(1) = 1, τ(2) = 3, and τ(3) = 2, i.e. τ = (2 3). Then, one can verify that
σ2 = τσ1τ

−1.

I’m not sure if we’ll prove this proposition in this class, but it’s good to convince yourself
that this is true. In the meantime, we return back to investigating conjugacy classes of Sn.
We start:
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Let σ be an m-cycle in Sn. How many conjugates does σ have?

Well, Proposition 10.14 pretty much does all the heavy work for us. Any conjugate of σ
must have the same cycle type, i.e. it must be an m-cycle as well. It suffices to count the
number of m-cycles in Sn.

Any m-cycle is of the form (a1 a2 . . . am) for some ai ∈ {1, . . . , n} distinct. We have n
options for a1, n− 1 options for a2, etc. until we have n−m+ 1 options for am. However,
we must be careful with overcounting: note that (a1 a2 . . . an) and (a2 a3 . . . an a1) are the
same cycle. Thus, we are overcounting each m times, so we correct by dividing by m. This
gives the number of conjugates as

|O(σ)| = n(n− 1) · · · (n−m+ 1)

m
.

Another basic fact which you should convince yourself is true:

Exercise 10.16. The order of an m-cycle is m.

Problem 10.17. Let G = S4, and let K be the following subset containing all (2, 2)-
type permutations: K = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}. (For simplicity sake, I’m
going to notate K = {e, a, b, c}, in that order.)

1. Prove that K ≤ S4.

2. Prove that K ⊴ S4.

3. Let H = {σ ∈ S4 | σ(4) = 4} ≃ S3 be a subgroup of S4. Show that S4/K ≃ S3.
(Use the Second Isomorphism Theorem.)

Remark 10.18 (Actually an exercise). Before even beginning, note that K has 4 ele-
ments. What is the order of a? of b? of c? Have you seen a group like this before?

Proof. (Part 1) K is clearly non-empty. Every element has an inverse – in fact, each element
is its own inverse. Finally, one can compute

ab = (1 2)(3 4)(1 3)(2 4)

= (2 3)(1 4) = (1 4)(2 3) = c,

and likewise ac = b and bc = a, so this is closed under product.

The proofs for the others are left as an ExErCiSe fOr ThE rEaDeR.
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11 10/17 - Sylow Theorems

Corresponding reference: Section 4.5 in Dummit and Foote. (Small plug: I cover Sylow’s
First Theorem in the file on the left titled oct14, so check it out :P ) Today will be reserved
for stating the three theorems and their consequences; Wednesday will be for proving them.

We covered Lagrange’s Theorem earlier in the semester, which told us that if H ≤ G,
then |H| | |G|. As a small example, if |G| = 36, then we know that there cannot be a
subgroup of order 5.

But is there a converse to Lagrange? That is, if d | |G|, does there always exist a
subgroup of order d?

Sadly (or not, depending on your perspective), this is not always true. To give an
example, we’re going to introduce a very important subgroup of the symmetric group, using
n = 4 as our specific case for now:

Example 11.1 (Alternating Group)

Let n = 4. Consider the subgroup A4 ≤ S4 containing all permutations of type (2, 2) or
(1, 3). Explicitly, the elements of A4 are

{e, (12)(34), (13)(24), (14)(23), (123), (132), (124), (142), (134), (143), (234), (243)},

so |A| = 12. (Check that this is a group!) We have 6 | 12, but we will prove below that
A4 has no subgroup of order 6.

Proof. Suppose for the sake of contradiction that there exists H ≤ A4 of order 6. Then,
[A4 : H] = 2. Let σ ∈ A4 \ H be a 3-cycle. Consider the cosets eH, σH, σ2H. We
have σH ̸= σ2H since σ /∈ H, and since σ2 = σ−1, we have σ2H = σ−1H ̸= eH since
σ /∈ H =⇒ σ−1 /∈ H.

But then this means eH, σH, σ2H are distinct cosets. This contradicts the fact that H
only has two cosets in A4, so no such H can exist.

Remark 11.2. More generally, the alternating subgroup An ≤ Sn contains all even
permutations of Sn, i.e. permutations whose sign is +1. (If you don’t know what
the sign of a permutation is, it’s intuitively saying that “there are an even number of
switches.”) This group is actually really important – the crux of Galois theory is that
An is simple for n ≥ 5 – but I don’t think we’ll have time to explore this in this class.
Take Math 123!

11.1 First Sylow Theorem

We start with a definition:

Definition 11.3 (p-group). A group of order pk for p prime, k ∈ N is called a p-group.
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The statement of the First Sylow Theorem is as follows:

Theorem 11.4 (First Sylow Theorem)

A finite group whose order is divisible by a prime p contains a Sylow p-subgroup.
Equivalently, if |G| = pe · m for e ∈ N and p ∤ m, then G contains a subgroup H of
order pe. (H is a Sylow p-subgroup.)

This may seem reasonable, but it is not obvious at all a priori! For instance, it’s not
evidentthat a group of order 21 consisting of the identity element and 20 elements with
order 3 does not exist. To make this theorem a bit more tangible, let’s look at some
consequences.

Corollary 11.5

A finite group G, with p | |G| for prime p, contains an element of order p.

Proof. Let |G| = pr ·m, where p ∤ m. By the First Sylow Theorem, there exists H ≤ G with
|H| = pr. Let x ∈ H be a non-identity element. By Lagrange’s Theorem, |x| | |H| = pr, so
|x| = pk for some 1 ≤ k ≤ r. Let y = xp

k−1
. then,

yp =
(
xp

k−1
)p

= xp
k

= e.

Combining this with the fact that y ∈ H (it is a product of x’s for x ∈ H) and y ̸= e (else
|x| ≤ pk−1), we have |y| | pr and 1 < |y| ≤ p, which is only possible if |y| = p as desired.

11.2 Conjugate Subgroups

Now we build up some tools to help us prove our theorem of interest. The notion of
conjugates for subgroups is basically identical to conjugates of elements.

Definition 11.6 (Conjugate Subgroups). If H1, H2 ≤ G, we say that H1 is conjugate
to H2 if ∃ g ∈ G such that H1 = gH2g

−1. We denote this H1 ∼ H2.

Remark 11.7. Note H1 = gH2g
−1 ⇐⇒ H2 = g−1H1g = g−1H(g−1)−1, so conjugates

“go both ways.”

We bring this definition up because we will show that any two Sylow p-subgroups are
conjugates.

Lemma 11.8

If H1 ≤ G is a Sylow p-subgroup of G and H1 ∼ H2, then H2 is also a Sylow p-subgroup.
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Proof. Since H1 ∼ H2, we have |H1| = |H2|. (Left as exercise, but not hard at all.) Let
H2 = gH1g

−1 for some g ∈ G. We need to check that H2 is actually a subgroup as well.

Since e ∈ H1, we have e = geg−1 ∈ H2. For closure of inverses, if g1 = gh1g
−1 ∈ H2 with

h1 ∈ H, then g−1
1 = gh−1

1 g−1, which is also in H2 since h−1
1 ∈ H. Finally, if g1 = gh1g

−1

and g2 = gh2g
−1 are both elements of H2, then g1g2 = (gh1g

−1)(gh2g
−1) = gh1h2g

−1 ∈ H2,
as desired.

11.3 Second Sylow Theorem

Theorem 11.9 (Second Sylow Theorem)

Let G be a finite group with p | |G|. Then,

1. The Sylow p-subgroups of G are conjugate subgroups, i.e. if P1, P2 are two Sylow
p-subgroups, then ∃ g ∈ G such that P2 = gP1g

−1.

2. Every subgroup of G that is a p-group is contained in a Sylow p-subgroup.

Corollary 11.10

A group G has a unique Sylow p-subgroup H iff H is a normal Sylow p-subgroup.

Proof. For the reverse direction, we know from Lemma 11.8 that any two Sylow p-subgroups
are conjugates. But if H is normal, then any conjugate of H is itself, so it is the only such
subgroup.

For the forward direction, the Second Sylow Theorem tells us that H = gHg−1 for any
g ∈ G, which means H is normal, as desired.

11.4 Third Sylow Theorem

An absolute banger of a theorem.

Theorem 11.11 (Third Sylow Theorem)

Let G be a finite group, with |G| = n = pr ·m for r ∈ N and p ∤ m. Let np denote the
number of Sylow p-subgroups of G. Then,

np | m np ≡ 1 (mod p).

This is perhaps the most tangible theorem of them all, and also personally the most sur-
prising. To investigate some applications, we’re going to define what a simple group is.
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Definition 11.12 (Simple group). A simple group G is a group with no non-trivial
normal subgroups, i.e. if H ⊴ G, then H = G or H = {e}.

Some really cool results that fall from the three theorems, with the Third carrying a lot of
the weight.

Proposition 11.13

There is no simple group of order pq, where p ̸= q are primes.

Proof. Let np, nq be the number of Sylow p, q-subgroups, respectively. Sylow I tells us that
np, nq > 0. If either of np, nq = 1, then Corollary 11.10 tells us that there is a non-trivial
normal subgroup of G. Thus, suppose np, nq > 1.

WLOG assume p > q. By Sylow III, np | q and np ̸= 1, so np = q. We also have np ≡ 1
(mod p), so q ≡ 1 (mod p) =⇒ p | q − 1. But then p < q, a contradiction to p > q, so we
conclude.

Proposition 11.14

A group of order 30 is not simple.

Proof. By Sylow III, n2 | 3 · 5 and n2 ≡ 1 (mod 2), so n2 ∈ {1, 3, 5, 15}. Also by Sylow III,
we have n3 | 10 and n3 ≡ 1 (mod 3), so n3 ∈ {1, 10}. Finally, n5 | 6 and n5 ≡ 1 (mod 5), so
n5 ∈ {1, 6}. If any of n2, n3, n5 is 1, then Corollary 11.10 immediately gives us our desired
result. Thus, assume none are 1.

This forces n3 = 10 and n5 = 6. But these numbers are too big! In particular, n3 = 10
means we have 10 Sylow 3-subgroups, which gives us 2 · 10 = 20 distinct non-identity
elements, and n5 = 6 gives us another 4 · 6 = 24 distinct non-identity elements. We already
have 20 + 24 = 44 > 30, so this is not possible! The result follows.

I really like this proof; Sylow III sets us up with a lot of information, enough such that
it reduces the problem into a simple counting puzzle. There’s not that many problems in
higher-level math where you can finish a proof by just saying “20+ 24 > 30 so we’re done.”

12 10/19 - Proving Sylow I, and More Sylow Applica-

tions

Recall the First Sylow Theorem (Theorem 11.4), which we’ll prove first.

Example 12.1 (Sylow I on S4)

Let G = S4. We know |G| = 24 = 23 · 3, so Sylow I tells us that there exists a Sylow

Hahn Lheem Page 53



Math 122: Algebra I 10/19 - Proving Sylow I, and More Sylow Applications

2-subgroup of S4. This subgroup has order 23 = 8. Indeed, one can prove that D8 is a
Sylow 2-subgroup of S4. Even better, |S5| = 120 = 23 · 3 · 5, and one can show that D8

is still a Sylow 2-subgroup of S5.

12.1 Proof of Sylow I

Now we prove the theorem.

Proof. We’re going to define a very peculiar group action. Suppose |G| = pr ·m where p ∤ m.
Then, we will define A to be the set of all subsets of G with size pr, i.e.

A = {S ⊂ G subset | |S| = pr}.

Note that any Sylow p-subgroups must lie in A. Now, we define a group action G ↷ A
where, for g ∈ G and S ∈ A, g · S := {g ∗ s | s ∈ S}.

We need to verify that this is a valid group action. The first thing we must verify is that
g · S is actually in A, i.e. |g · S| = pr. Consider the function f : S → g · S where s 7→ g ∗ s.
This is injective (g ∗ s1 = g ∗ s2 =⇒ s1 = s2) and surjective (the pre-image of any g ∗ s
is simply s), so it is a bijection, which means the cardinalities must match. Verifying that
this action satisfies the group action axioms (identity action, associativity) is not difficult
so I’ll leave it for the reader.

We will now present a series of results that’ll build up to our conclusion. The first lemma
concerns the number of elements of S. Note that S consists of all subsets of size pr; a simple
combinatorial argument tells us that there are

(
pr·m
pr

)
= (pr·m)!

pr!(pr(m−1))!
total elements in S.

(Myrto calls this Lemma 0; I think it’s self-evident enough to just state it without calling
it a lemma.)

Lemma 12.2

p ∤ |A| =
(
pr·m
pr

)
.

Proof. This isn’t even related to group theory lol this is strictly a number theory argument.
We can simplify (

pr ·m
pr

)
=
prm(prm− 1)(prm− 2) · · · (prm− pr + 1)

pr(pr − 1) · · · 1

=
prm

pr
· p

rm− 1

pr − 1
· · · · · p

rm− pr + 1

1

=
prm− 0

pr − 0
· p

rm− 1

pr − 1
· · · · · p

rm− (pr − 1)

pr − (pr − 1)
.

We wish to show that this product is not divisible by p, so it suffices to show that every
term in the product, which is of the form prm−(pr−i)

pr−i
for 1 ≤ i ≤ pr, is not divisible by p.

Suppose pk is the largest power of p dividing pr−i. Then, since pk | pr, pk | prm−(pr−i)
as well. But suppose pj is the largest power of p dividing prm − (pr − i). Since pj | pr,
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we must have pj | pr − i. Thus the largest power of p dividing the numerator and the
denominator, respectively, must be the same, which means the quotient is not divisible by
p. The conclusion follows.

Lemma 12.3

Let S ∈ A. Then, | StabG(S)| ≤ |S| = pr.

Proof. Recall g · S = {g ∗ s | s ∈ S} and StabG(S) = {g ∈ G | g · S = S}. Pick any s ∈ S.
Then, ∀ g ∈ StabG(S), g ·S = S =⇒ g∗s ∈ S, so StabG(S) ·s = {g∗s | g ∈ StabG(S)} ⊆ S.
But similar to what we did earlier in the proof, we can construct a bijection f : Stab(S) →
Stab(S) · s where s′ 7→ s′ ∗ s. Thus, with the information | Stab(S)| = | Stab(S) · s| and
Stab(S) · s ⊆ S, we have | Stab(S)| = | Stab(S) · s| ≤ |S| as desired.

Now we start digging into the group theoretic parts of the proof. We know that the
distinct orbits of our action partition our set A, so write

A =
k⊔

i=1

O(Si)

where O(Si) are the distinct orbits. But by our first lemma (12.2), p ∤ |A|, so

p ∤
k∑

i=1

|O(Si)|.

It follows then that p ∤ |O(Si)| for some i. But by Orbit-Stabilizer Theorem, we know
|O(Si)| = |G|/| Stab(Si)|, and if p ∤ |G|/| Stab(Si)| but pr | |G|, it must be true that
pr | | Stab(Si)|. Consequently, pr ≤ | Stab(Si)|.

But our second lemma (12.3) tells us that | Stab(Si)| ≤ pr, so equality must hold. Thus,
Stab(Si) is a Sylow p-subgroup of G, and we conclude.

This proof is definitely quite funky: we construct this very unusual (but admittedly
clever) group action on the set of all subsets of our desired order, and then the crux of the
argument follows from some combinatorial and divisibility arguments.

For a more straightforward proof, check out the oct14.tex file on the left! I first prove
Cauchy’s Theorem, which is a weaker form of Sylow I, before proving Sylow I itself. I think
despite having to prove an intermediary theorem, that proof is more streamlined and closer
to the spirit of group theory.

12.2 Applications of the Sylow Theorems

So apparently we’re only going to prove the First Sylow Theorem.

Hahn Lheem Page 55



Math 122: Algebra I 10/26 - Rings

Problem 12.4. Show that S4 has no subgroup isomorphic with Q8.

Proof. Note |Q8| = 8. It suffices to show that there is no Sylow 2-subgroup of S4 that is
isomorphic to Q8.

We showed in the beginning of today’s class (Example 12.1) that D8 is a Sylow 2-
subgroup of S4. By Lemma 11.8, any Sylow 2-subgroup of S4 must be conjugates with D8.
But conjugation is an isomorphism, i.e. H

≃−→ gHg−1 for any g ∈ G (prove this yourself if
you don’t believe me!), so it suffices to show that D8 is not isomorphic to Q8.

We use an order argument. Q8 only has one element of order 2 (namely, −1) whereas D8

has 5 elements of order 2 (the 4 reflections and r2), so they cannot be isomorphic. QED

We’re going to apply Sylow III for this next one. I encourage you to try it yourself before
looking at the proof!

Proposition 12.5

Every group of order 15 is cyclic.

Consequently, note that any group of order 15 must be abelian.

Proof. By Sylow III, n3 | 5 and n3 ≡ 1 (mod 3), which forces n3 = 1. Let H be the unique
Sylow 3-subgroup of G; by Corollary 11.10 (follows from Sylow II), H ⊴ G is normal. It is
also cyclic since it has order 3, so H = ⟨h⟩.

Also by Sylow III, n5 | 3 and n5 ≡ 1 (mod 5), so n5 = 1 as well. Let K be the unique
Sylow 5-subgroup of G. Likewise, K is normal and cyclic (K = ⟨k⟩).

Since H ⊴ G, we will consider the subgroup HK ≤ G. We will now show that HK = G,
i.e. |HK| = |G| = 15. A priori we have HK ≤ G =⇒ |HK| ≤ |G| = 15. But we know
H,K ≤ HK, so by Lagranges, we have 3 = |H| | |HK| and 5 = |K| | |HK|, so 15 | |HK|.
Coupled with |HK| ≤ 15, this is only possible if |HK| = 15.

It remains to show G = HK is cyclic. We claim that the map

φ : H ×K → HK

(a, b) 7→ ab

is an isomorphism. This completes the proof, since then we’d have HK ≃ H × K =
⟨h⟩×⟨k⟩ = ⟨(h, k)⟩, soHK would be cyclic. It is not hard to show that φ is a homomorphism
(use the fact that H,K ⊴ HK). Bijectivity follows from the fact that φ is surjective (the
preimage of ab ∈ HK is (a, b) ∈ H ×K) and |H ×K| = |HK| = 15, so we’re done.

13 10/26 - Rings

10/24 (Monday) was the midterm. Now that it’s over, we can move on to the second half
of the course! The corresponding reference will be Section 7.1 of Dummit and Foote.
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The key distinction here is that a ring has two binary operations: addition and multi-
plication. So the setting here is a lot more specific than that for groups. The most classic
example of a ring is the integers Z; think about them as you go through the following
definitions, examples, results, etc.

Definition 13.1 (Ring). A ring R is a set together with two binary operations (+, ·),
called addition and multiplication, such that:

1. (R,+) is an abelian group.

2. · is associative, i.e. (a · b) · c = a · (b · c) for all a, b, c ∈ R.

3. The distribution laws hold in R, i.e. ∀ a, b, c ∈ R, a · (b + c) = a · b + a · c and
(b+ c) · a = b · a+ c · a.

A few remarks: although addition is commutative since (R,+) is abelian, multiplication
does not need to be commutative. As we’ll see in our examples, the set of n × n matrices
with real entries forms a ring, but multiplication is not commutative.

Also, there are additive inverses (from (R,+) being a group) but we do not require
the existence of multiplicative inverses. In other words, (R, ·) does NOT need to be a
group. (Even if we take away 0, (R \ {0}, ·) is not necessarily a group.) Once we require
multiplicative inverses, though, we get something called a field, which we may cover in this
class?? not sure. Definitely in Math 123 though!

To highlight these remarks, we’ll start with a more sophisticated examples, then cover
the easier ones:

Example 13.2 (Matrices)

Let Mn(R) be the set of n× n matrices with real entries. We covered in Lecture 1 that
this set under addition forms a ring, and it is not difficult to see that with multiplication,
it satisfies associativity and distributivity. But note that there are matrices that are

not invertible, e.g.

(
1 1
0 0

)
, or more generally anything with determinant 0.

Example 13.3 (Most things we like are rings)

Z,Q,R,C,Z/nZ are all examples of rings! (+ and · in Z/nZ are taken modulo n.) The
set of odd integers under + and · is not a ring, though, since under addition they don’t
form a group. (It’s not closed under +.) On the other hand, the set of even integers,
(2Z,+, ·), does form a ring.

When multiplication is commutative for a ring, we aren’t pretentious like in the group
setting and call them abelian. Instead, we just call them commutative.
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Definition 13.4 (Commutative Ring). The ring R is commutative if multiplication
is commutative.

If we’re really pedantic, note that our definition of rings don’t even require the multiplicative
identity 1 to exist! Some conventions require us to say that a ring R has identity (or has
unity) if ∃ 1 ∈ R such that 1 · a = a · 1 = a for all a ∈ R – seems like Myrto wants us to not
assume identity.

On the other hand, you may see other references go ahead and assume all rings have a
multiplicative identity 1 ̸= 0 (thus, ({0},+, ·) is not a ring). Cleverly, the call rings without
identity as a rng, since you take away i for identity. This is just mathematicians being
(annoying) fastidious, though – for basically everything in our class, we assume rings have
identity.

Example 13.5 (Gaussian integers)

Number theorists love this one! The set Z[i] = {a + bi | a, b ∈ Z} ⊆ C forms a
ring. Addition works like (a + bi) + (c + di) = (a + c) + (b + d)i and is commutative,
and multiplication works like (a + bi)(c + di) = (ac − bd) + (ad + bc)i ∈ Z[i]. In
fact, multiplication is also commutative, so Z[i] is a commutative ring! Even better,
Z[
√
d] = {a + b

√
d | a, b ∈ Z} also forms a commutative ring (for the Gaussian integer

case, d = −1).

13.1 Preliminary Results

A fun result, gaining something out of nothing:

Lemma 13.6

If R is a ring with identity, then distributivity already implies that + is commutative.

In other words, if we assume that rings have identity, then we don’t even need to specify
that (R,+) must be abelian in our definition, since we can prove it from the other axioms!

Proof. We have

(1 + 1)(a+ b) = (1 + 1)(a+ b)

=⇒ 1(a+ b) + 1(a+ b) = (1 + 1)a+ (1 + 1)b

=⇒ a+ b+ a+ b = a+ a+ b+ b

=⇒ b+ a = a+ b,

and as this works for any a, b ∈ R, the result follows.

The ring axioms, although still barebones, are powerful, because from them we can
prove results which are seemingly so basic they feel unprovable/we’ve always taken them
for granted.

Hahn Lheem Page 58



Math 122: Algebra I 10/26 - Rings

Proposition 13.7 (“Back to first grade”)

Let R be a ring. Then,

1. 0 · a = a · 0 = 0 for all a ∈ R.

2. (−a)b = a(−b) = −(ab) for all a, b ∈ R.

3. (−a)(−b) = ab.

4. If R has identity 1, then the identity is unique, and −a = (−1) · a.

Proof. Statement (1): We have 0 · a = (0 + 0) · a = 0 · a = 0 · a, so Cancellation Law on
(R,+) gives 0 · a = 0 for any a ∈ R.

(2): We have ab+(−a)b = (a+(−a))b = 0·b = 0, which means −(ab) = (−a)b. A similar
argument holds for a(−b) = −(ab). Then for (3), (−a)(−b) = −(a(−b)) = −(−(ab)) = ab
since inverses in a group are unique.

(4): If 1, 1′ are both identities, then 1 = 1 · 1′ = 1′. (This mimics the uniqueness of
identity in groups.)

13.2 Zero divisors, Units

Some rings are “annoying” in that you can have two elements, both non-zero, which multiply
to 0. We have special names for such elements, as well as a special name for rings with such
elements.

Definition 13.8 (Zero divisor). A non-zero element a ∈ R is called a zero-divisor if
there is a non-zero element b ∈ R such that a · b = 0 or b · a = 0.

Definition 13.9 (Integral domain). (Technically not covered in class yet) A ring with
no zero-divisors is caleld an integral domain.

Example 13.10 (Z/6Z is not integral domain)

Note 2 · 3 = 0 in Z/6Z, so 2, 3 are both zero-divisors, and Z/6Z is not an integral
domain. Many things we like are integral domains, though! e.g. Z,Q,R,C,Z/pZ for p
prime, etc.

Thinking opposite, if an element has a multiplicative inverse, we call it a unit.

Definition 13.11 (Unit). Assume R has identity 1 ̸= 0. An element u ∈ R is called a
unit if ∃ v ∈ R such that u · v = v · u = 1. We cay that v is the multiplicative inverse
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of u, and write v = u−1 (likewise, u = v−1). We denote the set of units of R as

R× = {u ∈ R | u is a unit}.

Example 13.12 (Units of Z, Z/pZ)
The units of Z are only 1,−1. On the other hand, (Z/pZ)× contains everything other
than 0. (This is a number theoretic fact.) We call (Z/pZ)× the group of units of
Z/pZ (and more generally, the set of units of a ring under multiplication forms a group,
which we call the group of units of that ring).

Rings with “only” units (except for 0) have a special name, too:

Definition 13.13 (Division ring). A non-trivial ring R such that ∀R \ {0}, ∃ a−1 ∈ R
such that aa−1 = a−1a = 1 is called a division ring.

14 10/31 - Integral Domains and Fields

A short exercise to demonstrate why we don’t like rings with zero divisors:

Exercise 14.1. Find a ring R and a, b, c ∈ R \ {0} such that ab = ac but b ̸= c.

Proof. Z/nZ is our friend, where n is composite. Simplest example: in Z/4Z, 2 · 1 = 2 · 3
but 1 ̸= 3 clearly. You can do a similar thing for, say, Z/6Z, since 2 ·1 = 2 ·4 but 1 ̸= 4.

On the other hand, if a is not a zero-divisor, then we can indeed proceed with the
Cancellation Law. Reasoning: if a ∈ R \ {0} is not a zero-divisor and ab = ac, then
a(b− c) = 0, which is only true if b− c = 0 since a is not a zero-divisor.

Because we like the Cancellation Law so much, most of our time spent on rings will
be with rings that allow, in general, cancellation, i.e. rings that have no (non-zero) zero-
divisors. One such example of such a ring is what we saw at the very end of last class, a
division ring! (See Definition 13.13; any unit cannot be a zero divisor.)

14.1 Fields

When we require division rings to be commutative, then we get another truly lovely math-
ematical object.

Definition 14.2 (Field). A field is a commutative division ring.

Aside from these seemingly-random names (I still have no idea why fields are called fields),
groups, rings, and fields are arguably the three most important objects in algebra.
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Example 14.3 (Fields! and not fields)

Q,R,C are all examples of fields: they are commutative, and every non-zero element
has an inverse/is invertible. Z and Z[i] are not fields, because although they are com-
mutative, you can’t invert every element, e.g. 1

2
/∈ Z,Z[i].

Example 14.4 (Quaternions)

Note that a field is a commutative division ring, which suggests that there exists divi-
sion rings which are not commutative. Indeed, we have the following fancy example.
Recall the quaternion group Q8 and its generators i, j, k ∈ Q8. We can construct the
quaternion ring

H = {a+ bi+ cj + dk | a, b, c, d ∈ R}.

Addition and multiplication behaves in the way you’d expect (think complex numbers
but more general).

14.2 Integral Domains

Scoping outwards, we’ll give a name to the most general kind of ring that exhibits Can-
cellation Law for any non-zero element, i.e. rings where every non-zero element is not a
zero-divisor.

Definition 14.5 (Integral domain). A commutative ring with 1 ̸= 0 is called an inte-
gral domain if it has no zero-divisors.

Remark 14.6. All fields are integral domains, which in turn are always rings. There
are many other types of rings we could fill into this “inclusion chain”! For instance,
commutative rings where every element has unique factorization into irreducibles forms
another kind of ring, called unique factorization domains (UFDs). All fields are
UFDs, and all UFDs are integral domains.

Example 14.7 (Integral domains)

Perhaps the easiest example (and where the name integral comes from) is the integers
Z. Note that Z is an example of an integral domain which is not a field. Similarly, Z[i]
is an integral domain. As we mention above, all fields are integral domains.

14.3 Some Results

Integral domains and fields are closer than you may imagine:
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Proposition 14.8

Any finite integral domain is a field.

Proof. Let R be a finite integral domain. R is commutative by definition. Let 0 ̸= a ∈ R.
It suffices to show that a is a unit, i.e. ∃ b ∈ R such that ab = 1.

Let f : R → R map x 7→ ax. Note that f is injective since if f(x) = f(y), for x, y ∈ R,
then ax = ay =⇒ x = y since integral domains satisfy the Cancellation Law. At the same
time, since R is finite, this means f must be surjective by a simple cardinality argument.

Thus, ∃ b ∈ R such that f(b) = 1, which is equivalent to saying ab = 1, as desired.

We observed before that some cases of Z/nZ, particularly when n is composite, are
annoying because zero divisors arise. (If n = ab is composite, a, b ̸= 1, then ab = 0 in
Z/nZ.) Luckily, though, when n is prime, we’re happy:

Proposition 14.9

Z/nZ is a field iff n is a prime.

Proof. From the above argument, if n is composite, then n is not an integral domain, and
hence not a field. We wish to show that when n = p is prime, then Z/pZ is a field. From
the above proposition (14.8), it suffices to show that Z/pZ is an integral domain, as it is
clearly finite.

Suppose a, b ∈ Z/pZ such that ab = 0 in Z/pZ. Then, p | ab, which is only possible if
p | a or p | b, i.e. a = 0 or b = 0. Thus, it is an integral domain, and we conclude.

14.4 Polynomial Rings

Lowkey the heart of the study of commutative algebra. This is an object you’re very familiar
with already (we all know what polynomials are!), we’re just taking the time to formalize
the notion.

First, we’ll define what we mean by a polynomial. Let R be a ring. Then, a polynomial
in x is an expression

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

where n ∈ N∪{0}, and ai ∈ R for 0 ≤ i ≤ n. We call the ai’s as coefficients, and if an ̸= 0,
then n = deg f is called the degree of f . If an ̸= 0, then it is called a leading coefficient,
and if an = 1 (assuming 1 ∈ R), then we say that f(x) is monic.

All of this checks out with how we normally understand polynomials, e.g. over R = Z,
the expression 2x2 + 3x − 2 is a polynomial of degree 2 with leading coefficient 2, so it is
not monic.

Considering the set of all polynomials in x over R, we can endow it with addition
and multiplication operations! (It’s the same as how we’d normally add and multiply
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polynomials.) One can check that this satisfies the axioms of a ring. We notate this ring as
R[x]. People often read this ring out loud as “R adjoin x” or “polynomials over R in x.”
Explicitly...

Definition 14.10 (Polynomial ring over R). The set of all polynomials of any degree
with coefficients in a ring R is called the ring of polynomials in one variable over
R and is denoted by R[x]. Even more explicitly,

R[x] = {anxn + · · ·+ a1x+ a0 | n ∈ N ∪ {0}, ai ∈ R ∀ 0 ≤ i ≤ n}.

Addition and multiplication works as you expect; Myrto writes it out in class, but I’m
too lazy to write it out.

Remark 14.11. If R is commutative with identity, then R[x] is also commutative with
identity 1 ̸= 0.

Remark 14.12. Warning: a polynomial is a “formal object” and should not be iden-
tified with the function it may define. To explain more: in school, we often thought of
polynomials as functions – think of all the times you were forced to graph quadratic
equations and stuff. But bounding ourselves to the “polynomial is a function” perspec-
tive is really restrictive in higher-level math. Instead, we think of polynomials as just
expressions, a sum of a bunch of powers of x each multiplied to a ring element.

Here’s one situation in which the “polynomial is a function” perspective causes problems.
Take R = Z/2Z, and consider p(x) = x + 1 ∈ R[x] and q(x) = x2 + 1 ∈ R[x]. But then
we have p(0) = q(0) = 1 and p(1) = q(1) = 0, but clearly p ̸= q (p has degree 1 while
q has degree 2). Thus, polynomials cannot be determined by their point evaluations, i.e.
polynomials shouldn’t be thought of as functions.

15 11/02 - Ring Homs, Ideals

Happy November! (Wait, it’s already November??)

15.1 Wrapping Up Integral Domains

Example 15.1 (Why zero-divisors suck, revisited)

Half exercise, half remark. We know that for polynomials over the integers (which
we now have a nice way of notating: Z[x]), given f, g ∈ Z[x], we have deg(fg) =
deg(f) · deg(g). But this is only true because Z is an integral domain!

To consider a polynomial ring over a non-integral domain, take (Z/4Z)[x]. Although
it is true that deg(2x2 + 1)(x + 1) = 3 = deg(2x2 + 1) + deg(x + 1), this is not true
for deg(2x2 + 1)(2x + 1) = deg(4x3 + 2x2 + 2x + 1) = deg(2x2 + 2x + 1) = 2 ̸=
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deg(2x2 + 1) + deg(2x+ 1).

As alluded in the above, everything is good for integral domains.

Theorem 15.2

Let R be an integral domain and p(x), q(x) ∈ R[x] are non-zero. Then,

1. deg pq = deg p+ deg q;

2. (R[x])× = R×;

3. R[x] is an integral domain.

Proof. (Statement 1) Let p(x) = anx
n + · · · + a0 where an ̸= 0 so n = deg p, and let

q(x) = bmx
m + · · · + b0, where bm ̸= 0 so m = deg q. Since p, q ∈ R[x], we require every

ai, bj ∈ R. Then, the leading term of the product p(x)q(x) is clearly anbmx
n+m, with

anbm ̸= 0 since an ̸= 0, bm ̸= 0 and R is an integral domain (hence no zero divisors). Thus,
deg pq = n+m.

(Statement 2) Suppose p(x) ∈ (R[x])×, so ∃ q(x) ∈ R[x] such that p(x)q(x) = q(x)p(x) =
1. Taking the degree on both sides, we have deg pq = deg 1 = 0. By Statement 1, this is
equivalent to deg p+deg q = 0, which can only be possible if deg p = deg q = 0, so p(x) ∈ R
is constant. But if p ∈ R, then p can only be a unit if p ∈ R×.

(Statement 3) First, one can show that R[x] is commutative since R itself is commutative.
Furthermore, R ⊂ R[x], so as 1 ∈ R and 1 ̸= 0 in R, the same applies in R[x].

Now we show that R[x] has no zero divisors. Suppose p(x), q(x) ∈ R[x] where q(x) ̸= 0
but p(x)q(x) = 0. Then, deg pq = deg 0 = 0, so deg p(x) + deg q(x) = 0, which can only
be true if deg p(x) = deg q(x) = 0. Thus, p(x) = p0 ∈ R and q(x) = q0 ∈ R are both
constants. But since R is an integral domain and q0 ̸= 0 but p0q0 = 0, it must follow that
p(x) = p0 = 0, as desired.

15.2 Ring Homomorphisms

The following several sections correspond to Section 7.3 in Dummit and Foote.

Whenever we introduce a new mathematical object, it is important to specify how the
objects interact with each other, i.e. how to map from one such object to another. Like with
groups, we call maps between rings preserving the ring structure as homomorphisms. But
since rings have two operations, we need to make sure that the map preserves the structure
with respect to both operations. This will be made clear in the definition.

Definition 15.3 (Ring homomorphism). Let R, S be rings. A ring homomorphism
is a function φ : (R,+, ·) → (S,+, ·) such that ∀ r1, r2 ∈ R,

1. (Preserves additive structure) φ(r1 + r2) = φ(r1) + φ(r2)
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2. (Preserves multiplicative structure) φ(r1r2) = φ(r1)φ(r2)

A bijective ring homomorphism is called a ring isomorphism.

Remark 15.4 (Ring homs are group homs). The first requirement (preserving additive
structure) is equivalent to saying φ is a group homomorphism under +, where we
consider R, S as additive groups.

We continue carrying over some of our knowledge of group homomorphisms/functions in
general.

Definition 15.5 (Kernel). The kernel of a ring homomorphism φ : R → S is

kerφ = {a ∈ R | φ(a) = 0}.

Remark 15.6 (Notions of kernel coincide). Viewing φ as a group homomorphism (Re-
mark 15.4), the group-theoretic kernel of φ coincides with the ring-theoretic kerφ.

Example 15.7 (Important: reduction maps)

This flavor of maps, where a ring is sent to some quotient, will come up many times!
We’ll look at the reduction map mod n, i.e. the map

φ : Z → Z/nZ
a 7→ a.

Note that this is a ring homomorphism: φ(a + b) = a+ b = a + b = φ(a) + φ(b) and
φ(ab) = ab = ab. The kernel of φ are all integers which are 0 mod n, i.e. the subgroup
nZ. This checks out: we know φ is surjective, so we could use the First Isomorphism
Theorem to verify (tautologically) Z/nZ = Z/ kerφ ≃ Imφ = Z/nZ.

Example 15.8 (Evaluation at 0 map)

Another map that will recur in this class. We can take the map φ : R[x] → R where
we evaluate each polynomial at 0; in other words, plug in 0 for x. One can check that
this is a ring homomorphism (by “one” I mean you, because I’m too lazy to write stuff
out).

Exercise 15.9. Let φn : Z → Z be the map sending a 7→ na. For which integers n is
φn a ring homomorphism? (Hint: issues arise when you require φ(ab) = φ(a)φ(b).)
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15.3 Subrings, Ideals

Just like how in groups, we have the notion of a subgroup, i.e. a subset which also has a
group structure, we can have “rings” contained in larger rings.

Definition 15.10 (Subring). A subring S of a ring R is a subgroup of (R,+) that is
closed under mutliplication (i.e. if a, b ∈ S, then ab ∈ S).

Remark 15.11. Note that a subring does NOT have the identity 1, unless the subring
is the whole ring itself.

Example 15.12 (Subrings)

Z is a subring of Q (in turn, Q is a subring of R, which is a subring of C, which is a
subring of the quaternion ring H, see Example 14.4). For any ring R, R is a subring of
R[x].

Like with groups, the image and kernel of a ring homomorphism are subrings.

Proposition 15.13

Let R, S be rings, φ : R → S be a ring homomorphism. Then,

1. Imφ is a subring of S.

2. kerφ is a subring of R.

Proof. We already know that since φ is a group homomorphism (under +), kerφ, Imφ are
subgroups of R, S, respectively. Thus, we only need to check that they are closed under
multiplication.

Let a, b ∈ Imφ. Then, a = φ(a′), b = φ(b′) for some a′, b′ ∈ R. Then, ab = φ(a′)φ(b′) =
φ(a′b′), and as a′b′ ∈ R, we get ab ∈ Imφ.

Likewise, let r, s ∈ kerφ. Then, φ(rs) = φ(r)φ(s) = 0 · 0 = 0, so rs ∈ kerφ.

We can strengthen the notion of “closed under multiplication” though, which will serve
to be magically useful. We’ll use the kernel as our motivation. Note that even if s /∈ kerφ,
we would still have φ(rs) = φ(r)φ(s) = 0 · φ(s) = 0 =⇒ rs ∈ kerφ, so in some sense, the
kernel “absorbs” everything in multiplication: whenever I multiply an element in the kernel
with something else, the product will always be in the kernel.

We have a special name for this.

Definition 15.14 (Ideal). Let R be a ring and I ⊆ R a subring.

1. If ∀ r ∈ R, a ∈ I, we have ra ∈ I, then I is a left ideal.
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2. If ∀ r ∈ R, a ∈ I, we have ar ∈ I, then I is a right ideal.

3. If I is both a left and right ideal, then it is a two-sided ideal.

Remark 15.15 (Etymology of ideal). Given the name “ideal,” one may suspect that
ideals are really useful. Indeed, in lots of number theory, ideals are the “ideal” way to
think about things. Hopefully we can elaborate on this later in class!

Example 15.16 (Ideals)

Many examples! As we observed already, if φ : R → S is a ring homomorphism, then
kerφ is an ideal of R. (This suggests an analogy between normal subgroups for groups
and ideals for rings! And indeed, as we’ll see very soon, we can quotient a ring by an
ideal.)

• nZ is an ideal of Z. In terms of the kernel, we already observed that nZ is the
kernel of the reduction map Z → Z/nZ. (See Example 15.7.)

• The subset of R[x] containing all polynomials with 0 as its constant term forms an
ideal of R[x]. Indeed, this is just the kernel of the evaluation at 0 map. (Example
15.8.)

• For any ring R, we have the zero ideal {0}. Also, R is an ideal of itself.

• The subring

I =

{(
a 0
b 0

)
| a, b ∈ R

}
⊆M2(R)

is a left ideal. It is NOT a right ideal! (Verify this yourself.)

16 11/07 - Analogous Group Properties for Rings

16.1 Quotient Rings

As mentioned last time, it turns out that the analogous notion of normal subgroups for rings
is ideals. So let’s take the following setup: let (I,+) ≤ (R,+). A priori, let’s just assume
I is a subring. We can consider the set of (additive) cosets R/I = {r + I | r ∈ R}. In the
perspective of groups under the addition operation, we get that (R/I,+) is a group! That’s
half of the ring axioms.

But it’d be really nice if we could equip this quotient with a ring structure, which would
require multiplication. Let’s define multiplication the natural way: given cosets a + I and
b+ I, we want (a+ I)(b+ I) = (ab) + I. This is where we require stronger conditions, like
how quotients didn’t make sense for any subgroup.
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The following theorem tells us that the condition we exactly want is that I should be
an ideal:

Theorem 16.1

Let I ⊂ R be a subgroup of (R,+). Then, the multiplication on R/I given by (a +
I)(b+ I) = ab+ I is well-defined and makes a ring (R/I,+, ·) iff I is an ideal of R.

Proof. First, assume the multiplication operation is well-defined, i.e. for any a, b ∈ R,
(a + I)(b + I) = ab + I. This means that if we choose any i, j ∈ I, then the product of
elements (a+ i)(b+ j) ∈ ab+ I.

Since the above is true for any choice of a, b ∈ R and i, j ∈ I, we will choose appropriately
to show that I satisfies all the ideal axioms. If a = b = 0, then we get ij ∈ I for all i, j ∈ I,
so I is a subring. If a = j = 0, then we get ib ∈ I, which tells us that I is a right ideal.
Likewise, if b = i = 0, then we get aj ∈ I, so I is a left ideal. Thus, I is a (two-sided) ideal,
as desired.

Now we assume I is an ideal. First, we will verify that multiplication is well-defined, i.e.
our multiplication operation is independent on choice of representative. Suppose a′ ∈ a+ I
and b′ ∈ b + I. (Note this implies a′ + I = a + I and b′ + I = b + I by Lemma 6.17.)
Equivalently, this means a′ = a + i and b′ = b + j for some i, j ∈ I. Then, we have
a′b′ = (a + i)(b + j) = ab + aj + ib + ij. Since I is an ideal, aj, ib, ij ∈ I, so a′b′ ∈ ab + I,
which tells us (again by Lemma 6.17) that a′b′ + I = ab + I, so indeed our choice of
representatives does not matter.

Finally, we observe that the multiplication operation here is associative and distributive
as multiplication in our ring R is associative and distributive, so we conclude.

To really wrap things up formally:

Definition 16.2 (Quotient ring). Let R be a ring and I an ideal. Then, R/I is called
the quotient ring of R by I. Note we just showed that the quotient only makes sense
as a ring iff I is an ideal.

Example 16.3 (Z/nZ)
Prototypical example of quotient ring is Z/nZ. I suspect most quotient rings you’ll
encounter in this class won’t be too far off in flavor from Z/nZ.

16.2 First Isomorphism Theorem

The reason why I had a clear preference for the First Isomorphism Theorem when studying
groups is that this one, unlike the others, can be generalized to algebraic objects beyond
groups, like rings!

Before we state the theorem, let’s see perhaps the simplest example of how we can use the
First Isomorphism Theorem. If I is an ideal of R, then we can construct a projection map
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R → R/I where r 7→ r+I. It is not hard to see that this is a surjective ring homomorphism,
and that the kernel of the map is exactly I. Tautologically, the First Isomorphism Theorem
tells us that since the image of the map is R/I and the kernel is I, we get R/I ≃ R/I,
which checks out.

Theorem 16.4 (First Isomorphism Theorem, for rings)

If φ : R → S is a ring homomorphism, then kerφ is an ideal of R and R/ kerφ ≃ Imφ
as rings.

Proof. An isomorphism of rings must respect the additive and multiplicative structures
of both rings. The additive part is covered from our work in groups: if φ : R → S is
a ring homomorphism, then φ : (R,+) → (S,+), where we only remember the group
structure, is a group homomorphism, so by the First Isomorphism Theorem for groups, we
get (R/ kerφ,+) ≃ (Imφ,+) as groups.

Even more explicitly, this means we have a map

ψ : R/ kerφ→ Imφ

r + kerφ = φ(r)

which is a well-defined bijective group homomorphism. To have ψ be a ring isomorphism,
it simply remains to show that ψ preserves multiplicative structure, i.e. for any r, s ∈ R,
ψ((r + kerφ)(s+ kerφ)) = ψ(rs+ kerφ). But we have

ψ(rs+ kerφ) = φ(rs) = φ(r)φ(s)

= ψ(r + kerφ)ψ(s+ kerφ),

as desired.

Example 16.5 (First Iso Theorem for rings)

Consider the ring homomorphism φ : Z[x] → Z where p(x) 7→ p(0). Clearly, the
map is surjective, so Imφ = Z. Furthermore, kerφ = {p(x) ∈ Z[x] | p(0) = 0} =
{a1x+ a2x2+ · · ·+ anxn | n ∈ N, ai ∈ Z} = x ·Z[x] (intuitively, if a polynomial has zero
constant term, then it must be divisible by x), so the First Isomorphism Theorem tells
you that Z[x]/xZ[x] ≃ Z.

A similar example: consider now φ : Z[x] → Z/2Z where p(x) = p(0). Again, this
map is surjective so Imφ = Z/2Z, and kerφ = {p(x) ∈ Z[x] | p(0) = 0} = {2a+xq(x) |
a ∈ Z, q(x) ∈ Z[x]} = (2, x), the ideal generated by 2 and x. (If the last equality scares
you, it’s just notation, so don’t fret.) The First Isomorphism Theorem tells us that
Z[x]/(2, x) ≃ Z/2Z.

Being comfortable with this kind of stuff will be immensely helpful for classes like
Math 123 and 129! (and honestly any algebra class lol)
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16.3 Finitely Generated Ideals

It is hard to overstress the importance of ideals in ring theory – it’s like saying addition is
important in math – so we’re going to talk more about ideals. The following material will
discuss ideals generated by a finite set. The corresponding reference is Section 7.4 of the
textbook.

For now, our convention will be that all rings have identity (1 ∈ R) and 1 ̸= 0. We start
with a general result about ideals:

Lemma 16.6

If R is a ring and I, J ⊂ R are ideals, then I ∩ J is an ideal.

Proof. Honestly a good (and very simple!) exercise for working with the ideal axioms, so I
suggest you work this out on your own before proceeding :)

First, given x, y ∈ I∩J , we know that as I and J are each ideals, x+y ∈ I and x+y ∈ J ,
so x+ y ∈ I ∩ J , so it is closed under addition. Now let r ∈ R and a ∈ I ∩ J . It suffices to
show both ar, ra ∈ I ∩ J . But since I and J are each ideals, it follows that ar, ra ∈ I and
ar, ra ∈ J , so they both must lie in the intersection as well, and we conclude.

We didn’t talk about this too much in groups, but even in the group setting, we like
things being finitely generated. Lots of groups we worked with were generated by one
element – cyclic groups – and they were arguably the nicest kind of groups we could work
with. Groups like D8 are generated by two element (r and s), and although some problems
arose (e.g. D8 is not abelian), we still had ways to work around them. There’s also this
quite remarkable statement called the Classification of Finitely Generated Abelian Groups,
which allows us to characterize all such groups.

This is all to say that it makes sense to care about finitely generated cases in rings as
well. So we’ll talk about finitely generated ideals.

Definition 16.7 (Ideals generated by subset). Let A ⊂ R be a subset.

1. Let (A) be the smallest ideal of R containing A, i.e.

(A) =
⋂
I⊇A
I ideal

I.

(A) is called the ideal generated by A.

2. If A = {a} is a singleton, we write (A) = (a) and call it a principal ideal.

3. If A = {a1, . . . , an}, then we write (A) = (a1, . . . , an) and call it a finitely
generated ideal.

This definition is good because it’s generic, but bad because it’s difficult to grasp these
ideals. What are its elements?
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We’ll take the simplest case: consider the principal ideal (a). By definition, a ∈ (a),
and since (a) is an ideal, 0 ∈ (a). We can now work through the ideal axioms to generate
more elements of (a). Given any r ∈ R, we must have ar ∈ (a) and ra ∈ (a). This also
means that r1ar2 ∈ (a) for any r1, r2 ∈ R. Also, since ideals are closed under addition,
ar + ra ∈ (a) as well. This is a good start; we’ll continue to characterize this better.

Definition 16.8. If A = {a1, . . . , an}, we have the sets

RA = {r1a1 + · · ·+ rnan | ri ∈ R, ai ∈ A}
AR = {a1r1 + · · ·+ anrn | ai ∈ A, ri ∈ R}

RAR = {r1a1s1 + · · ·+ rnansn | ri, si ∈ R, ai ∈ A}.

These sets are interesting because...

Claim 16.9. For finite subset A in ring R, the set RA is a left ideal, AR is a right
ideal, and RAR is an ideal.

I won’t prove the claim because I’m lazy (also it’s a good exercise to work out for yourself –
it’s mostly definitional!), but within each set, you can add two elements “componentwise”
to show closure under addition, and (to give an example) for multiplication in RA, for
any b := r1b1 + · · · + rnbn ∈ RA and r ∈ R, we have r · b = r(r1b1 + · · · + rnbn) =
(rr1)b1 + · · ·+ (rrn)bn ∈ RA, yay!

Turns out that these sets are exactly what we wanted, so we tie our two loose ends.

Proposition 16.10

If A ⊆ R is finite, then (A) = RAR.

Proof. Claim 16.9 tells us that RAR is an ideal, and since 1 ∈ R (we’re assuming all rings
have identity in this section), we have 1 ·a ·1 = a ∈ RAR for all a ∈ A, so A ⊆ RAR. Thus,
(A) ⊆ RAR since (A) is the smallest ideal containing A.

The opposite inclusion follows from our construction of RAR. Any ideal that contains
A must contain all elements of RAR, as an ideal must be closed under addition and multi-
plication by ring elements on both sides. In particular, this means (A) must contain RAR,
as it is an ideal containing A, and we conclude.

Note that if our ring is commutative, then RA = AR = RAR, since all left or right ideals
are two-sided. All of this might not seem useful, but maybe these examples will convince
you otherwise.

Example 16.11

First, take the ring Z, and consider (n), the ideal generated by n. Then, the above tells
us that (n) = RnR = {n · a | a ∈ Z} = nZ, the multiples of n.
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Now consider the ideal (2, x) in Z[x]. We have (2, x) = {2p(x) + xq(x) | p(x), q(x) ∈
Z[x]} = {2n + xr(x) | n ∈ Z, r(x) + Z[x]}, which is how we characterized this ideal in
Example 16.5.

Exercise 16.12. Describe the ideal (2, x) ∩ (3, x).

Proof. Note that Lemma 16.6 tells us that the intersection is indeed another ideal. Suppose
p(x) ∈ (2, x) ∩ (3, x). Then, p(0) ∈ 2Z and p(0) ∈ 3Z, so p(0) ∈ 6Z, which means (2, x) ∩
(3, x) ⊆ (6, x). But clearly the reverse inclusion is also true, so (2, x) ∩ (3, x) = (6, x).

17 11/09 - Special Types of Ideals

17.1 Finitely Generated Ideals, cont.

We continue our discussion from last time on ideals generated by some finite subset of the
ring. A very convenient type of ideal is a principal ideal, which is generated by just one
element, an example being (n) = nZ an ideal of Z. We also saw an ideal with more than
one generator, like (2, x) ⊂ Z[x].

But sometimes, you can simplify things, i.e. there are situations where you can reduce
the number of generators. This is always the case for the integers: the ideal (9, 15) =
{9a+15b | a, b ∈ Z} is actually equivalent to the principal ideal (3)! (You should take some
time and try to see what’s going on here.)

What about the ideal (2, x)? Is this a principal ideal of Z[x] in disguise?

Claim 17.1. The ideal (2, x) ⊂ Z[x] is not a principal ideal.

Proof. Suppose it were, so (2, x) = (f(x)) for some f(x) ∈ Z[x]. We know 2 ∈ (2, x) =
(f(x)), so 2 = f(x)g(x) for some g(x) ∈ Z[x]. Taking degrees, we get 0 = deg 2 = deg f(x)+
deg g(x), but as deg f, deg g ≥ 0, this is only possible if deg f = deg g = 0. This means that
f, g ∈ Z are both constants; denote f(x) = a0, g(x) = b0 integers. Given f(x)g(x) = a0b0 =
2, our possibilities are reduced to f(x) = a0 ∈ {±1,±2}.

We also know x ∈ (f(x)), which means x = f(x) · q(x) for some q(x) ∈ Z[x]. Write
q(x) = c0 + c1x + · · · + cnx

n, so x = f(x)q(x) = a0(c0 + · · · + cnx
n), which forces a0c1 = 1

and a0ci = 0 for all other i ̸= 1.

The equality a0c1 = 1 (with a0 ∈ {±1,±2}, c1 ∈ Z) further restricts our possibilities to
f(x) = a0 ∈ {±1}, so (2, x) = (f(x)) = (1) or (−1). But both generate the entire ring, so
this means (2, x) = Z[x]. But this is clearly not true, since all elements of (2, x) must have
even constant term, and we conclude.

Turns out that although we care a lot about fields, the study of ideals is not very fruitful
in fields. It is a very ring-specific object.
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Proposition 17.2

Let R be a commutative ring with 1 ̸= 0. Then, R is a field iff its only ideals are {0}
and the ring R itself.

So in a way, fields are the ring-equivalent of simple groups. (Recall simple groups are groups
with only the trivial group and the entire group as its normal subgruops.) This is a corollary
of the following result:

Proposition 17.3

Let I be an ideal of R with 1 ̸= 0. Then, I = R iff I contains a unit.

Proof. If I = R, then 1 ∈ R = I is a unit, done. Now suppose I contains a unit a, with
ab = 1 for some b ∈ R. Then, (a) ⊂ I, but also 1 = ab ∈ (a) ⊂ I =⇒ (1) = R ⊂ I, which
is only possible if I = R.

Now we quickly prove Proposition 17.2.

Proof. Suppose the only ideals of R are the zero ideal and the ring itself. Let a ∈ R \ {0}.
We wish to show a ∈ R×. Consider the principal ideal I = (a). Since a ̸= 0, we have I ̸= 0,
so by assumption we force (a) = I = R. But then 1 ∈ (a) =⇒ ab = 1 for some b ∈ R,
which means a is a unit.

For the forward direction, if R is a field and {0} ≠ I ⊂ R a non-zero ideal, then I must
contain some non-zero field element, which is a unit, so Proposition 17.3 tells us that I = R
as desired.

17.2 Maximal Ideals

Another special type of ideals are called maximal ideals. As the name suggests, you can’t
find any ideals which strictly contain them.

Definition 17.4 (Maximal ideal). An ideal M in R is maximal if M ̸= R and the
only ideals of R containing M is M and R itself.

Remark 17.5. Maximal ideals are not necessarily unique! A ring can have multiple
maximal ideals. (Most simple example: in Z, the ideal (p) generated by a prime number
is maximal, and there are infinitely many primes.)

We won’t prove the following result (the proof uses Zorn’s Lemma, if you’re interested) but
it should be fairly intuitive once you understand what’s going on:

Fact 17.6. Every ideal is contained in a maximal ideal.
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Our current definition makes it a bit hard to determine whether an ideal is maximal. How
can we guarantee there are no “larger” ideals? Luckily, we have a super useful characteri-
zation of maximal ideals:

Proposition 17.7 (Quotient of maximals is field)

Assume R is commutative with 1 ̸= 0. Then the ideal M is maximal iff R/M is a field.

Example 17.8 ((2, x) is maximal)

From Example 16.5, we showed using the First Isomorphism Theorem that Z[x]/(2, x) ≃
Z/2Z, which is a field! So (2, x) is a maximal ideal. Likewise, we can do a similar
argument to say that (3, x) is maximal, as Z[x]/(3, x) ≃ Z/3Z is a field.

Example 17.9 (Primes induce maximal ideals)

If p ∈ Z is a prime, then (p) = pZ is a maximal ideal. It is useful to convince yourself
of this via “showing” that no ideal strictly contains pZ other than Z itself, but you can
also observe that Z/pZ is a field, so the conclusion is immediate.

The proof of the above proposition will require this very sexy result, which regrettably it
seems like we won’t prove for the time being.

Theorem 17.10 (Lattice Isomorphism Theorem)

Let I be an ideal of R. Then, the ideals of R/I are of the form A/I, where A ⊂ R is
an ideal containing I.

Example 17.11 (Ideals of Z/2Z, Z/4Z)
Let’s try to find all the ideals of Z/2Z. We know from Proposition 17.2 that since
Z/2Z is a field, the only ideals are {0} and Z/2Z. But using the Lattice Isomorphism
Theorem, it suffices to find all ideals of Z containing 4Z. Turns out the only such ideals
are Z and 2Z, which gives us the ideals Z/2Z and 2Z/2Z = {0}, as desired.

For Z/4Z, we can find ideals of Z containing 4Z, which are 4Z, 2Z,Z. This gives us
three ideals of Z/4Z, namely Z/4Z, 2Z/4Z ≃ Z/2Z, and 4Z/4Z ≃ {0}.

Assuming this, we’ll now prove Proposition 17.7.

Proof. The Lattice Isomorphism Theorem really does all the heavy lifting for us. The ideal
M ̸= R is maximal iff (by definition) there are no ideals I such that M ⊊ I ⊊ R, which is
true iff (by Lattice Isomorphism Theorem) the only ideals of R/M are R/M and {0}. But
Proposition 17.2 tells us that this is true iff R/M is a field, QED.
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17.3 Prime Ideals

Even juicier than maximal ideals are prime ideals. Here’s our motivation for the definition.
Our standard definition for an integer n being prime is if the “only factors of n are 1 and
n.” But this is kind of stupid – clearly −1 is a factor, but why don’t we mention that? I
propose a sturdier way of defining primes, one that bypasses these technicalities. We know
p ∈ Z is prime if p | ab =⇒ p | a or p | b.

This is the inspiration of the below definition; in fact, the example below it will show
that in Z, our definition of prime and the definition of a prime ideal are equivalent.

Definition 17.12 (Prime ideal). Let R be a commutative ring with 1 ̸= 0. An ideal
p ⊊ R is prime if ∀ a, b ∈ R such that ab ∈ p, then a ∈ p or b ∈ p.

Example 17.13 (Primes, thankfully, generate prime ideals)

It would be kind of a disaster if, given a prime number, it didn’t generate a prime ideal.
Thankfully, if p ∈ Z is prime, then (p) is a prime ideal: if ab ∈ (p) for a, b ∈ Z, this is
equivalent to saying p | ab, which means p | a or p | b, i.e. a ∈ (p) or b ∈ (p). So the
definition of prime ideal is basically just our primality condition we discussed earlier in
disguise. The upshot of writing it like this is that we can generalize to rings that aren’t
as nice as Z.

If n is composite, then we can show (n) is not prime. We can write n = ab where
a, b ̸= 1, a, b < n, so ab = n ∈ (n) but a /∈ (n), b /∈ (n). Finally, Z cannot be prime
because we require prime ideals to be strict subsets.

As with maximal ideals, our current definition is a bit sad because it’s hard to manually
verify if a given ideal is prime. But just like with maximal ideals, we have a super useful
characterization:

Proposition 17.14 (Quotient by prime is integral domain)

If R is a commutative ring with 1 ̸= 0, then p ⊆ R is prime iff R/p is an integral
domain.

Consequently,

Fact 17.15. All maximal ideals are prime.

Proof. This follows from the fact that any field is an integral domain, so if m is maximal,
then R/m is a field, hence an integral domain, hence m is prime.

So there are more primes than maximal ideals. Note that although all primes turn
out to be maximal in Z, this is not always the case: the ideal (x) ⊂ Z[x] is prime, since
Z[x]/(x) ≃ Z is an integral domain, but Z is not a field, so (x) is not maximal.

We now prove our characterization of prime ideals.
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Proof. An ideal p ⊊ R is prime iff for any ab ∈ p, we have a ∈ p or b ∈ p. But this is
equivalent to saying R/p ̸= {0} and if ab + p = 0 + p in R/p, then either a + p = 0 + p
or b + p = 0 + p. But we defined multiplication of cosets as (a + p)(b + p) = ab + p, so
this is equivalent to saying if (a + p)(b + p) = 0 + p, then one of the cosets must be 0 + p.
Equivalently, this means R/p ̸= {0} has no zero divisors, i.e. it is an integral domain, as
desired.

18 11/14 - Euclidean Domains

18.1 Larger Picture and Motivation

Yet another definition. But before you raise your hands and shout in disapproval, let’s take
a step back and see all the types of rings we have so far.

We start with additive groups. If it’s abelian and it has a particular multiplicative
structure, then it becomes a ring. If multiplication is also commutative, then we call it a
commutative ring. Within commutative rings, if there are no zero divisors, then we call it
an integral domain. Specifying even further, if every ideal is principal, we call it a principal
ideal domain. (These have appeared in the most recent pset.) And finally, if the non-zero
elements of the ring form a commutative group under multiplication, then we call it a field.

This is just to show that the collection of all rings (if we want to be pretentious, the
category of rings) is like an ogre: it has many layers. We continue to impose restrictions on
our ring axioms to form more and more specific rings, each having their own unique purpose
in mathematics at large. Fields form the core of Galois theory; many scenarios in algebraic
geometry deal with rings with certain conditions, e.g. integral domains.

Our next type of ring, called Euclidean domain, fits in between PIDs and fields: all
fields are Euclidean domains, and all Euclidean domains are principal ideal domains. (The
former is kinda stupid if you think about it long enough (or see Example 18.5); the latter
is a consequence of PSet 9 Problem 4 and is explicitly proven in Proposition 18.6.)

Here’s our motivation for Euclidean domains. In Z, we have a Division Algorithm that
allows us to find gcd’s. (If you’re a CS or number theory kid, this is the Euclidean Algorithm,
which comes from the Division Algorithm, and from which the name “Euclidean domain”
comes from.) Explicitly, Division Algorithm tells us that for any integers m,n ∈ Z with
n ̸= 0, ∃ q, r ∈ Z such that m = qn+ r and 0 ≤ r < n.

The condition 0 ≤ r < n suggests that we must have some notion of “size” which is
not entirely clear in most rings. (How do we compare two polynomials?) So let’s construct
some way to measure size.

18.2 Definitions

Definition 18.1 (Norm). Any function N : R → Z≥0 with N(0) = 0 is called a norm
in an integral domain. If N(a) > 0 for a ∈ R \ {0}, then the norm is called positive.

Hahn Lheem Page 76



Math 122: Algebra I 11/14 - Euclidean Domains

Author’s Note 18.2. I must comment that this definition of a norm is pretty unusual.
Usually, norms are more restrictive, e.g. it must satisfy Triangle Inequality, but I guess
Myrto’s word is supreme in this class :)

Example 18.3 (Norms in Z)
In the ring Z, we have an obvious norm N(a) = |a|. We could also take something more
creative: fix integers a1, . . . , an, and let N(a) = a1a+ a2a

2 + · · ·+ ana
n.

We are now ready to define Euclidean domains.

Definition 18.4 (Euclidean Domain). R is an Euclidean domain if there is a norm
N on R such that ∀m,n ∈ R, n ̸= 0, ∃ q, r ∈ R with m = qn+ r and N(r) < N(n) or
r = 0.

Example 18.5 (Euclidean domains)

Z is a Euclidean domain with N(a) = |a|; this is our Division Algorithm. All fields are
Euclidean domains. Let F be a field. If a, b ∈ F with b ̸= 0, then a = (ab−1)b, i.e.
the remainder is always 0, so we can take a stupid norm function like N(a) = 0 for all
a ∈ F .

For something a little less trivial, Q[x] is a Euclidean domain with N : Q[x] → Z≥0

where N(p(x)) = deg p(x). This is because for any p, q ∈ Q[x], q ̸= 0, there exists
q1(x), r1(x) ∈ Q[x] such that p(x) = q1(x)q(x) + r1(x) and deg r1 < deg q. More
generally, F [x] is a Euclidean domain for any field F by the same argument.

18.3 Euclidean implies PID

I mentioned that every Euclidean domain is a principal ideal domain. We will now prove
this.

Proposition 18.6

Every ideal in a Euclidean domain R is principal. More precisely, if I is an ideal of R,
then I = (d) for some d ∈ R.

Proof. The zero ideal is generated by 0, i.e. {0} = (0). Let I ̸= {0}. Let d ̸= 0 be an
element of I with smallest norm (i.e. there are no non-zero elements in I with norm less
than N(d)). We claim I = (d).

Suppose a ∈ I. Since R is a Euclidean domain, we may write a = dq + r where q, r ∈ R
and either r = 0 or N(r) < N(d). But by minimality of N(d), it must follow that r = 0,
which means a = dq, or equivalently a ∈ (d). But this is true for any a ∈ I, so I ⊆ (d). But
d ∈ I =⇒ (d) ⊆ I, which forces equality.
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Corollary 18.7 (Z is PID)

Z is a principal ideal domain.

Thus, all ideals are of the form (n) = nZ for some n ∈ Z. Even more, all prime ideals are
of the form (p) for some prime p ∈ Z. These are also all the maximal ideals. On the other
hand...

Corollary 18.8

Z[x] is not a Euclidean domain.

Proof. We showed earlier (Claim 17.1) that (2, x) is not a principal ideal, so Z[x] is not a
PID and hence not Euclidean. (Note, on the other hand, Q[x] (or F [x] for any field F ) is a
Euclidean domain by Example 18.5!)

A very important statement: let R be a commutative ring with 1 ̸= 0. Let a, b ∈ R with
b ̸= 0. Then,

b | a ⇐⇒ ∃ r ∈ R such that a = br

⇐⇒ (a) ⊆ (b).

This is a bit funky to remember at first, since the “order” switches (b | a ⇐⇒ (a) ⊆ (b)),
but this will get more intuitive as you play with it more. When in doubt, always think
about what happens in Z! 2 | 6 means (6) ⊆ (2), i.e. all multiples of 6 are also multiples of
2. The “smaller” the generator, the larger the ideal is.

18.4 GCD

Definition 18.9 (Greatest common divisor). Let R be a commutative ring with 1 ̸= 0.
Let a, b ∈ R with b ̸= 0. Then, d is a greatest common divisor of a and b (denoted
by gcd(a, b)) if

1. d | a and d | b,

2. if 0 ̸= d′ ∈ R satisfies d′ | a and d′ | b, then d′ | d. (Equivalently, if a ∈ (d′) and
b ∈ (d′), then (d) ⊆ (d′).

An equivalent definition:

Definition 18.10 (GCD, defined by ideals). A greatest common divisor of a and
b (if it exists) is a generator for the smallest principal ideal containing both a and b.

Hahn Lheem Page 78



Math 122: Algebra I 11/14 - Euclidean Domains

Remark 18.11. Note we say “a” greatest common divisor, not “the.” Turns out that
GCDs are unique up to units, i.e. any two GCDs of two elements differ by a factor
of a unit. However, the ideal generated by any two GCDs are the same, so we have
uniqueness when discussing GCDs in the language of ideals. Yet another reason why
we love ideals!

Example 18.12 (GCD is not unique)

To expand on the above: in Z, we could have gcd(2, 2) as either 2 or −2, which are
clearly different as elements, but (2) = (−2) = 2Z. In a field F , if we take any two
non-zero a, b ∈ F , then gcd(a, b) could be any non-zero element in F !

Example 18.13 (GCD may not exist!)

Even if R is something nice like an integral domain, the GCD may not always exist!
Consider the ring R = Z[

√
−3]. Clearly there exists GCDs in some cases, e.g. gcd(2, 2)

is either 2 or −2. But consider a = 4 and b = 2(1 +
√
−3). Note we can factor

a = 4 = 2 · 2 = (1 +
√
−3)(1−

√
−3),

so one may think that 2 or 1+
√
−3 can be the GCD, but 2 ∤ 1+

√
−3 and 1+

√
−3 ∤ 2,

so it doesn’t satisfy the definition of GCD. Spooky stuff.

Example 18.14 (gcd(2, x))

Example 17.8 tells us that (2, x) is maximal, and Claim 17.1 informs us that it is not
principal. Thus, we see that any principal ideal containing both 2 and x must strictly
contain (2, x), but then by maximality, the principal ideal must be (1) = R itself. Thus,
gcd(2, x) = 1 (or −1).

As a consequence of the second definition of GCD:

Proposition 18.15

If a, b ∈ R are non-zero elements and (a, b) = (d), then d is a greatest common divisor
of a, b in R.
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Theorem 18.16

Let R be a Euclidean domain with a, b ∈ R non-zero. Let d = rn be the last non-zero
remainder in the Euclidean algorithm for a and b. Then,

1. d is a GCD of a, b,

2. (d) = (a, b). In particular, d = ax+ by for x, y ∈ R.

Proof. Let R be an Euclidean domain with norm N . Let a, b ∈ R non-zero and d = rn as
in the statement. We will show (a, b) = (d) via inclusion in both directions.

Showing (a, b) ⊆ (d) is equivalent to showing d | a and dIb. Our Euclidean algorithm
looks like

a = q0b+ r0

b = q1r0 + r1
...

rn−2 = qnrn−1 + rn

rn−1 = qn+1rn,

where N(rn) < N(rn−1) < · · · < N(r1) < N(r0) < N(b) and each ri ̸= 0. We prove by
induction down to 0 that rn | ri for all i ≤ n.

It is obvious when i = n. Let k ≤ and assume rn | ri for all k ≤ i ≤ n. But then we have
rk−1 = qk+1rk + rk+1, so rn divides the right hand side, which means rn | rk−1, completing
the inductive step. Thus, rn | q1r0 + r1 = b, so rn | q0b+ r0 = a, as desired.

Now we show (a, b) ⊇ (d). It suffices to show d = rn ∈ (a, b). We will show ri ∈ (a, b) for
all i via induction upwards. Since we can express r0 = a−q0b, we have r0 ∈ (a, b), completing
the base case. Suppose ri ∈ (a, b) for 0 ≤ i ≤ k. Then, rk+1 = rk−1 − qk+2rk ∈ (a, b),
completing the inductive step. Thus, we can conclude d = rn ∈ (a, b).

The first statement follows from proposition immediately above.

18.5 Principal Ideal Domains

I’ve admittedly been talking about principal ideal domains for a while, but I guess we never
explicitly defined them in class, so:

Definition 18.17 (Principal ideal domain). An integral domain is called a principal
ideal domain (PID) if every ideal I of R is principal.

Corollary 18.18

If R is a PID and a, b ∈ R are two non-zero elements, then gcd(a, b) always exists.
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Proof. Consider the ideal (a, b). R is a PID, so (a, b) = (d) must be a principal ideal. By
the above theorem (18.16), d = gcd(a, b), done.

So to recap, we have the following inclusions: all fields are Euclidean domains, all Eu-
clidean domains are PIDs, and all PIDs are integral domains.

Example 18.19 (Rings in each layer)

Q is a field. Z is a Euclidean domain which is not a field. Using Example 18.13 as
inspiration, Z[

√
−3] is a PID (not obvious a priori but believe me) but not a Euclidean

domain. Z[x] is an integral domain but not a PID (we know (2, x) is not principal).

Proposition 18.20

Every non-zero prime ideal in a PID is maximal.

This gives concrete justification to our claim that “all prime ideals of Z (of the form (p) = pZ
for p prime) are maximal.”

Proof. Let R be a PID and (a) ⊆ R a prime ideal. Suppose (a) ⊆ (b) for b ∈ R. It suffices
to show that (a) = (b) or (b) = R.

From (a) ⊆ (b), we have a ∈ (b), so a = rb for some r ∈ R. Thus, rb ∈ (a). But (a) is
prime, so either r ∈ (a) or b ∈ (a). If the latter, then b ∈ (a) =⇒ (b) ⊆ (a) which implies
(a) = (b). If the former, i.e. r ∈ (a), then r = sa for some s ∈ R. Thus,

a = rb = sab

=⇒ a(1− sb) = 0

=⇒ 1 = sb

=⇒ 1 ∈ (b) = R.

(The third line follows from the fact that a ̸= 0 and R is a PID, hence an integral domain.)
The conclusion follows.

19 11/16 - Prime and Irreducible Elements

Recall Proposition 18.20 above. Note that the non-zero condition is really important, as
{0} = (0) is always a prime ideal, but it is almost never maximal. (Before moving on, can
you determine for which rings (0) is maximal?)

Corollary 19.1

If R is an integral domain such that R[x] is a PID, then R is a field.
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We know from Corollary 18.8 that Z[x] is not a Euclidean domain. From this corollary, we
can strengthen this statement: Z[x] is not even a PID since Z is not a field. On the other
hand, Example 18.5 shows (informally) Q[x] is a Euclidean domain, hence it is a PID. This
checks out, since Q is a field.

Proof. I won’t hash out this first claim here, but one can use the First Isomorphism Theorem
(using the map R[x] → R mapping p(x) 7→ p(0)) to show R[x]/(x) ≃ R. This means (x)
is a prime ideal, since R is, by assumption, an integral domain. But if R[x] is a PID,
then Proposition 18.20 tells us that (x) must be maximal, which is equivalent to saying
R[x]/(x) ≃ R is a field, and we conclude.

19.1 Prime vs Irreducible

We now make a very important distinction. We start in the integers, where this distinction
is not necessary. We know that any integer has a unique prime factorization, e.g. if I give
you 2022, you can factor it into 2× 3× 337 and this factorization is unique up to ordering
of the primes. And luckily, these primes obey our definition of primes we discussed before
defining prime ideals (Definition 17.12); namely, p ∈ Z is prime if p | ab =⇒ p | a or p | b.

However, things aren’t always so nice. (Both a blessing and a curse in math: a curse for
obvious reasons, but a blessing because some really interesting math arises from this. Yet
another plug for Math 123/129!)

Example 19.2 (When unique factorization fails)

Consider the ring Z[
√
−5]. We have the following factorizations of 6:

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

We can’t “break down” each of the four terms 2, 3, 1 +
√
−5, 1−

√
−5 any further, and

yet they are not prime: we have 2 | (1 +
√
−5)(1 −

√
−5) but 2 does not divide either

of the terms in Z[
√
−5].

The above example suggests that the notion of a “prime,” which brought us to the definition
of a prime ideal, is different from the notion of an “irreducible” element, something which
“can’t be broken down into something smaller.” (Many words here are not well-defined, but
the big picture is what’s important.) We’ll attempt to define this rigorously.

Definition 19.3 (Irreducible). Let R be an integral domain. Suppose r ∈ R \ {0} is
not a unit. Then, r is called irreducible if whenever r = ab, a, b ∈ R, then one of a or
b is a unit. Otherwise, r is reducible.

Thus, any r ∈ R is either a unit, irreducible, or reducible.

Exercise 19.4. Find a unit, irreducible, and reducible element in Z, respectively.
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We contrast this with our definition of prime:

Definition 19.5 (Prime element). A non-zero element p ∈ R is prime if it is not a
unit and if p | ab for a, b ∈ R, then p | a or p | b. Equivalently, 0 ̸= p ∈ R is prime iff
(p) is a prime ideal of R.

Finally, we only care about elements up to multiplication by units. For example, we could
factorize 2022 as −2 · −3 · 337; by our definition of prime/irreducible (they’re the same
in Z), −2 and −3 are still primes/irreducibles, but this is clearly not “exactly” the same
factorization as 2 · 3 · 337. But we can declare them to be the same, by saying they are the
same up to multiplication by units. We call these associates.

Definition 19.6 (Associates). Elements a, b ∈ R are associates iff (a) = (b), or
equivalently, iff a = ub for some unit u ∈ R×.

19.2 Relating Primes with Irreducibles

We’ve stated already that in Z, primes and irreducibles are the same. We can make a
slightly more general statement to relate primes and irreducibles:

Proposition 19.7

In an integral domain, a prime element is always irreducible.

Proof. Let p ∈ R be a prime element. Say p = ab for a, b ∈ R. We wish to show a or b is a
unit. By definition, we know (p) is prime, which means either a ∈ (p) or b ∈ (p). WLOG,
suppose a ∈ (p). Then, a = p · c for some c ∈ R. Then,

p = ab = pcb =⇒ p(1− cb) = 0.

By definition, p ̸= 0 as p is prime, so 1 = cb = bc, which means b ∈ R×, as desired.

Okay, that’s cool, but when is an irreducible element prime? We already observed this
is true in Z. Turns out it is true in any PID.

Proposition 19.8

In a PID, a non-zero element is prime iff it is irreducible.

Proof. We know any prime ideal is irreducible by Proposition 19.7 and the fact that any
principal ideal domain is an integral domain. So we just need to show every irreducible is
prime.

Assume that p ∈ R is irreducible; we wish to show (p) is prime. Fact 17.15 (all maximals
are prime) and Proposition 18.20 (every non-zero prime ideal is maximal in a PID) tells us
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that in a PID, an ideal is prime iff it is maximal. Thus, as (p) ̸= (0), it suffices to show (p)
is maximal.

Suppose M is an ideal such that M ⊇ (p). It suffices to show M = (p) or M = R. Since
R is a PID, we may write M = (m) for some m ∈ M . Then, (p) ⊆ (m) means p = mr
for some r ∈ R. But p is irreducible, so either r ∈ R× or m ∈ R×. If r ∈ R×, then p,m
are associates, so by definition (p) = (m) = M . Otherwise, if m ∈ R×, then (m) = R (it is
clearly contained in R, but any r ∈ R can be expressed as m ·m−1r ∈ (m), so (m) ⊇ R),
and we conclude.

19.3 Interlude: Chinese Remainder Theorem

We take a brief commercial break from our discussion of primes and irreducibles to introduce
the Chinese Remainder Theorem. Some of you may have seen this in the context of the
integers, but this is a more general (and equally important) statement in integral domains.

Author’s Note 19.9. Chinese Remainder Theorem is often abbreviated as CRT, not
to be confused with critical race theory. Don’t be scared, Ron DeSantis!

Here’s the situation for the integers. Suppose a, b ∈ Z are coprime, i.e. gcd(a, b) = 1.
Then, if I take any 0 ≤ r1 < a and 0 ≤ r2 < b, then I can guarantee ∃x ∈ Z such that
x ≡ r1 (mod a) and x ≡ r2 (mod b). Moreover, this is unique modulo ab, i.e. if y ≡ r1
(mod a) and y ≡ r2 (mod b), then x ≡ y (mod ab). This a priori seems more like a number
theory fact, but we shall generalize to make it more algebraic.

Let’s break down the above, starting from the very top. We supposed a, b ∈ Z are
coprime. Well, what does coprime mean in a ring in general? We’ll use the following for
inspiration: in the integers, if a, b are coprime (i.e. gcd(a, b) = 1), then ∃x, y ∈ Z such that
ax+ by = 1. This means that any n ∈ Z can be written as a linear combination of a and b.

Definition 19.10 (Comaximal/coprime). The ideals A and B of a ring R are comax-
imal or coprime if A + B = R. Recall the sum of two ideals is the set {a + b | a ∈
A, b ∈ B}.

Relating this to what we said about the integers:

Lemma 19.11

If R is a PID and a, b ∈ R with gcd(a, b) = 1, then (a) + (b) = R.

Proof. We have gcd(a, b) = 1 =⇒ (a, b) = (1) = R, so 1 = ax+ by =⇒ 1 ∈ (a) + (b) =⇒
R = (1) ⊆ (a) + (b). But inclusion in the other direction is obvious, so equality follows.

Let’s go back to breaking down our little blurb about CRT for the integers. The rest of
the paragraph is just two statements: existence of an integer that satisfies both congruence
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relations, and uniqueness of that integer up to mod ab. Let’s address the existence statement
first.

Recall that Z/nZ, being a quotient ring, can be thought of as cosets of our ideal (n).
Thus, x ≡ r1 (mod a) is equivalent to saying x+(a) = r1+(a) in Z/(a), so we can generalize
by saying ∃x ∈ R such that x + (a) = r1 + (a) in R/(a) and x + (b) = r2 + (b) in R/(b).
Equivalently, ∃x ∈ R such that

(x+ (a), x+ (b)) = (r1 + (a), r2 + (b))

in R/(a) × R/(b). (This is a product ring, which I’m too lazy to rigorously define, but
it’s a set where addition and multiplication are defined coordinate-wise. The ring structure
follows because it is a ring in each coordinate.)

The nice thing is that uniqueness is embedded into the language. This may be easiest
seen in the integers: if x, y ∈ Z satisfy x ≡ y (mod ab), then (x+(a), x+(b)) = (y+(a), y+
(b)) in R/(a)×R/(b) by construction.

We now state the “more general“ version of CRT (I put “more general” in quotations
because the correct perspective should be that the integer case is a specific example of CRT,
not the other way around).

Theorem 19.12 (Chinese Remainder Theorem)

Let R be an integral domain and A,B ⊂ R are ideals. Then, the map

φ : R → R/A×R/B

r 7→ (r + A, r +B)

is a ring homomorphism with kerφ = A ∩B. If further A and B are comaximal, then

R/AB ∼= R/A×R/B.

To give a super abbreviated version of the proof, it goes like this: if A,B are comaximal,
observe A ∩ B = AB = {

∑n
i=1 aibi | ai ∈ A, bi ∈ B} and Imφ = R/A× R/B, so the result

follows from First Isomorphism Theorem. We flesh this out:

Proof. We first show φ is a ring homomorphism. This is pretty chill:

φ(r1r2) = (r1r2 + A, r1r2 +B)

= ((r1 + A)(r2 + A), (r1 +B)(r2 +B))

= (r1 + A, r1 +B) · (r2 + A, r2 +B)

= φ(r1)φ(r2).

Similarly, φ(r1 + r2) = φ(r1) + φ(r2). Note that φ(r) = (0 + A, 0 + B) iff r + A = 0 + A
and r +B = 0 +B, i.e. r ∈ A and r ∈ B, so r ∈ A ∩B =⇒ kerφ = A ∩B, woohoo.

finish next time?

Hahn Lheem Page 85



Math 122: Algebra I 11/21 - Unique Factorization Domains

20 11/21 - Unique Factorization Domains

We’ll finish up our discussion on the Chinese Remainder Theorem. Recall the statement
from above, and let’s look at some applications. We already have the application in the
integers, which inspired the more general statement of the theorem in the first place.

Theorem 20.1 (CRT for PID)

Let R be a PID and I = (a), J = (b) be two coprime ideals, e.g. (a, b) = R. Then,

R/(ab) ∼= R/(a)×R/(b).

Claim 20.2. Let a1 ̸= a2 ∈ Q and b1, b2 ∈ Q, then ∃ !f ∈ Q[X] where deg f ≤ 1 such
that f(a1) = b1 and f(a2) = b2.

Colloquially, this means you can find a “line” that goes through two specified points. Noth-
ing too enlightening, but the tools we’ve built up allows us to discuss such a geometric
fact from a purely algebraic perspective, which is useful because lots of rings don’t have a
corresponding geometric picture (at least, for now... take Math 137/232 if you want some
spice in your life).

Proof. Since a1 ̸= a2, the linear terms X−a1 and X−a2 are comaximal, since we can write

1 =
(X − a1)− (X − a2)

a2 − a1
∈ (X − a1) + (X − a2).

Then, CRT tells us that Q[X]/(X − a1) × Q[X]/(X − a2) ∼= Q[X]/(X − a1)(X − a2), so
(b1, b2) 7→ f for some f(X) ∈ Q[X], deg f ≤ 1. (This is because we can always reduce
f(X) = q(X)(X − a1)(X − a2) + r(X) such that deg r(X) < deg(X − a1)(X − a2) = 2.

Our mapping tells us that f(X) = b1 in Q[X]/(X − a1), which means f(X) = (X −
a1)P1 + b1 for some constant P1, and likewise f(X) = (X − a2)P2 + b2. This f is unique,
because if f = g where deg f, deg g ≤ 1, then f = g + (X − a1)(X − a2)q for some constant
q. But the latter term has degree 2, so we must have q = 0, so f = g.

20.1 Unique Factorization Domains

Before we define this, let’s specify where this falls into the picture of rings. These lie in
between integral domains and principal ideal domains – that is, all principal ideal domain
are unique factorization domains, which are always integral domains.

The name pretty much tells you what these rings are: unique factorization is guaranteed.
A place where this fails: Example 19.2.
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Definition 20.3 (Unique factorization domain). A unique factorization domain
(UFD) R is an integral domain in which every non-zero r ∈ R which is not a unit has
the following properties:

1. r can be written as a finite product r = p1 · · · pn of (not necessarily distinct)
irreducibles pi ∈ R, and

2. The above decomposition is unique up to associates, namely if r = p1 · · · pn =
q1 · · · qm for irreducible pi, qi, then n = m and, up to permutation, qi is associated
to pi.

Example 20.4 (Z is a UFD)

Z is a UFD: every integer has a unique prime factorization. Explicitly, we can express
any non-zero n ∈ Z as n = εp1 · · · pk where ε = ±1 and pi is prime. Even more explicitly,
this is unique up to associates and permutation, e.g. we count the factorizations 10 =
2 · 5 = −5 · −2 as the same since 2,−2 and 5,−5 are each associates.

For a less obvious example:

Example 20.5 (Polynomials can form UFDs)

C[X] forms a UFD. The irreducible elements are of the form αX − β where α ̸= 0
and α, β ∈ C. If you know the Fundamental Theorem of Algebra, you know that any
P (X) ∈ C[X] can be factored into linear terms, i.e. if degP = n, then it has exactly n
complex roots, counting multiplicity. (For a baby example, the quadratic formula tells
you that you can always factor a quadratic into linear factors, whereas this is not the
case in the reals.)

Taking this in mind, we can write mathematically that ∀P (X) ∈ C[X[, P =
c
∏

i(X − αi) where c ∈ C \ {0} and αi ∈ C. This is unique up to permutation and
associates.

Example 20.6 (Fields and UFDs)

For a stupid example, any field F is a UFD since every nonzero element is invertible.
More interesting, though, is that the above example generalizes to any field F , even if
F is not algebraically closed: if F is a field, then F [X] is a UFD. Even more exciting,
we’ll prove next time that R[X] is a UFD iff R is a UFD.

Now for some counterexamples. We already have a counterexample in Example 19.2, where
in Z[

√
−5], 6 = 2 · 3 = (1 +

√
−5)(1 −

√
−5). For a slightly more pathological exam-

ple:
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Example 20.7 (Not UFDs)

Z[2i] = {a+2ib | a, b ∈ Z} is not a UFD. We can factor 4 = 2 ·2 = (−2i)(2i). Although
2, 2i are associates in C, they are not associates in Z[2i]. In fact, i is not even an element
in Z[2i]!

Furthermore, it is good practice to check that the two factorizations given are indeed
factorizations into irreducibles. Suppose for the sake of contradiction that 2 is not
irreducible, so 2 = z1 · z2. Write zi = αi + 2iβi. Then, denoting N(α+ 2iβ) = α2 + 4β2

and noting that N(ab) = N(a)N(b) (some form of this was on your problem set),

4 = N(2) = (α2
1 + 4β2

1)(α
2
2 + 4β2

2).

If βi ̸= 0, then α2
i + 4β2

i ≥ 4, so some βi must be 0. WLOG let β1 = 0. Then,
4 = α2

1(α2 + 4β2
2). If α1 = 1, then z1 = 1 is a unit; if α1 = 2, then (α2, β2) = (0,±1), so

z2 is a unit. This means 2 must be an irreducible. Similar arguments hold for showing
2i,−2i are also irreducible.

Remark 20.8. As we also saw in Example 19.2, irreducible elements are not prime
when unique factorization fails. Likewise, 2i is not prime in Z[2i], since 2i | 2 · 2 but
2i ∤ 2. We could also see this via the isomorphism Z[2i]/(2i) ∼= Z/4Z, where the
isomorphism is given by the map a + 2ib 7→ a. Since Z/4Z is not an integral domain,
(2i) cannot be prime.

We now reach the main result of today’s class: every principal ideal domain, and thus every
Euclidean domain, is a unique factorization domain.

Theorem 20.9 (All PIDs are UFDs)

If R is a PID, then R is a UFD.

An example of a UFD that is not a PID: Z[x]. Convince yourself that it’s actually a UFD,
and recall from Claim 17.1 that (2, x) ⊂ Z[x] is not principal. Another example if C[x, y].

Proof. Let R be a PID, and let − ≠ r ∈ R which is not a unit. We need to prove the two
conditions in the definition of a UFD, starting with the second one.

Assume that r has a decomposition into irreducibles. We will proceed by induction on
the minimal number n of irreducible factors in some decomposition of r. The base case is
n = 1 (if n = 0, then r is a unit), in which case r is itself irreducible. But then if we have
some decomposition r = q1 · · · qm, then r | q1 · · · qm.

But in a PID, irreducible elements are prime, so this means r | qi for some i. Conse-
quently, since qi itself is irreducible, r and qi are associates. WLOG letting i = 1, we have
r = q1 · c for some unit c, But then since R is an integral domain, we have q2 · · · qm = c,
which means q2 is also invertible, a contradiction an irreducible element is by definition not
invertible.
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Now we proceed with our inductive step: suppose that n ≥ 1 and uniqueness holds if r
has a factorization into n irreducible elements. Assume that r = p1 · · · pn+1 = q1 · · · qm are
two distinct factorizations into irreducibles. We can assume m ≥ n + 1, otherwise we can
simply apply the inductive hypothesis on m to guarantee uniqueness.

Like before, we have pn+1 | r = q1 · · · qm, which means pn+1 | qi for some i. WLOG let
i = 1. Like in the base case, this means pn+1 is associated to q1, so up to associates, we have
r′ = p1 · · · pn = q2 · · · qm. But by the inductive hypothesis on r′, this means r′ has unique
factorization, which means r = r′ · pn+1 also has unique factorization, as desired.

Now we prove the first condition in the definition of UFD: existence. Let r ̸= 0 be
a non-unit element. If r is irreducible, then we have the obvious decomposition r = r.
Otherwise, we have r = r1r2 where r1, r2 are not units. If r1, r2 are both irreducible, we are
done (we have the factorization r = r1r2); else, (WLOG r1 is not irreducible) we can write
r1 = r3r4 where r3, r4 are not units. This process eventually has to stop eventually. (clear
up this proof next time)

21 11/28 - More on UFDs, and Gauss’s Lemma

To recap, we have all Euclidean domains are PIDs, and from the above theorem, all PIDs are
UFDs. Also recall that in PIDs, we have the notion of a GCD. Turns out that we have GCDs
in UFDs as well. Just think about the integer case! Say a = upe11 · · · penn and b = vpf11 · · · pfnn ,

where u, v are units and pi are irreducibles. Then, gcd(a, b) = p
min{e1,f1}
1 · · · pmin{en,fn}

n .

The rest of the class will be largely devoted to proving the following theorem:

Theorem 21.1 (Polynomial ring of UFD is UFD)

If R is a UFD, then R[x] is a UFD.

Let’s see what this means in practice. Recall that Z[x] is not a PID, since the ideal (2, x)
is not principal (Claim 17.1). However, Z is a UFD, so this theorem tells us that Z[x] is
a UFD. This is an interesting case with respect to GCDs: in PIDs, if gcd(a, b) = d, then
∃x, y ∈ R such that ax+ by = d, but this is not necessarily the case in UFDs, even if GCDs
always exist. For example, the gcd of 2 and x is 1, but 1 /∈ (2, x).

Example 21.2 (Polynomial rings as UFDs)

From above, Z[x] is a UFD but not a PID. But if we apply the theorem on Z[x] itself,
then we have that (Z[x])[y] = Z[x, y] is also a UFD. We can adjoin an arbitrary number
of variables to get...

Corollary 21.3

If R is a UFD, then R[x1, . . . , xn] is also a UFD.
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21.1 Field of fractions

To prove Theorem 21.1, we’ll introduce the notion of a field of fractions. This corresponds
to Section 7.5 in Dummit and Foote.

Start with an integral domain; for the mot canonical example, take Z. Then, Q is the
field of fractions of Z, since any element in Q can be expressed as a

b
where b ̸= 0 and a, b ∈ Z.

Our goal is to generalize this; I’ll point out some subtleties before proceeding.

First, the b ̸= 0 is important, so we’ll keep this condition moving forward. Second, these
fractions are technically defined up to equivalence classes, where the equivalence relation in
Q is just equality. To demonstrate, note that 1/2 and 2/4 are the same fraction even though
they are written differently, so we have this notion of equivalence that a priori doesn’t exist
if we just say “all elements of Q are of the form a

b
.”

So as the name suggests, we’re going to take an integral domain R and then force it to
become a field, i.e. make every non-zero element have an inverse. We do this by constructing
fractions where the numerator and denominator are both in R, then saying two fractions
are equal if you can “simplify” one to the other.

21.2 Construction of Field of Fractions

Enough with the big-picture talk; let’s construct a fraction formally. Take R× (R \ {0}) =
{(a, b) | a, b ∈ R, b ̸= 0}. Define the relation (a, b) ∼ (a′, b′) ⇐⇒ ab′ = a′b. This is an
equivalence relation (left as exercise to the reader haha, but believe me for now).

Now, we may define a fraction a
b
to be the equivalence class of (a, b). Again, go-

ing back to the 1/2 = 2/4 case, the equivalence class of (1, 2) when R = Z is the set
{(1, 2), (−1,−2), (2, 4), . . . }.

Great, now we have a set of equivalence classes. We want this to be a ring (more
specifically, a field), so we want to endow it with addition and multiplication operations.
This is going to be just like how we do it for the rationals: we define

a

b
+
c

d
=
ad+ bc

bd
a

b
· c
d
=
ac

bd
.

We must check that these operations are well-defined. I’m going to largely leave this as
an exercise because it’s tedious and not very enlightening, but this is how you’d start: if
(a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′), then we want a

b
+ c

d
= a′

b′
+ c′

d′
, i.e. ad+bc

bd
= a′d′+b′c′

b′d′
, i.e.

b′d′(ad + bc) = bd(a′d′ + b′c′). Now use the fact that (a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′) to
finish.

Since we have the addition and multiplication operations, we now have a ring, and it’s
clear from construction that this is a field.

Definition 21.4 (Field of fractions). Given an integral domain R, the field of fractions
of R is

F = {a/b | a, b ∈ R, b ̸= 0}/ ∼,
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where a/b ∼ c/d iff ad = bc.

Example 21.5 (Fraction field of Rational Polynomials)

The field of fractions of Q[x] is Q(x) = {f(x)/g(x) | f(x), g(x) ∈ Q[x], g(x) ̸= 0}. An
example of an element in Q(x) is x2 + 2

x3+5x−4
.

A few remarks. First, I oftentimes see the field of fractions denoted as K(R). Second,
although having the rationals as your standard example is useful, remember that “a/b” is
just a formal symbol denoting an equivalence class. We could’ve written the elements of F
as (a, b) to demonstrate this more clearly, but that’s clunky and less intuitive.

Next, we always have an injection from the ring R to its field of fractions, since any ring
element r corresponds to the fraction r

1
. And finally, to bring this back to R[x] (Theorem

21.1, which is why we brought up field of fractions in the first place), note that since R ⊆ F ,
we have R[x] ⊆ F [x]. But F is a field, so F [x] is a Euclidean domain, hence a UFD.

But this doesn’t yet give us Theorem 21.1, since the above remark only tells us that R[x]
can be uniquely factored into irreducibles in F [x], but we want to factor it into irreducibles
in R[x]. The next result, though, will ensure that unique factorization in F [x] suffices.

21.3 Gauss’s Lemma

Theorem 21.6 (Gauss’s Lemma)

Let R be a UFD with field of fractions F . Let p(x) ∈ R[x]. If p(x) ∈ F [x] is reducible
in F [x], then it is reducible in R[x]. More precisely, if p(x) = A(x)B(x) for non-
constant polynomials A(x), B(x) ∈ F [x], then there exists non-zero r, s ∈ R such that
r
s
A(x) = a(x) ∈ R[x] and s

r
B(x) = b(x) ∈ R[x].

Remark 21.7. Note that the converse is not true. In Z[x], the polynomial 2(1 + x) is
reducible, but since 2 is a unit in Q, 2 + 2x is irreducible in Q[x].

To prove Gauss’s Lemma, we will use the following lemma, a generalization of Proposition
19.8 for UFDs.

Lemma 21.8

In UFDs, irreducibles are primes.

Proof. Let R be a UFD and suppose p ∈ R is irreducible. We wish to show p is prime.
Suppose p | ab for a, b ∈ R, so ab = cp for some c ∈ R. Writing each term as a product of
irreducibles (with the factorization of p being itself), it must follow that p is associates with
some irreducible factor of either a or b, which means either p | a or p | b, as desired.
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Now we prove Gauss’s Lemma.

Proof. Let p(X) ∈ R[x]. Suppose p(x) factors in F [x] as p(x) = A(x)B(x) whereA(x), B(x) ∈
F [x]. Putting all coefficients of A and B, respectively, under the same denominator, we can
write A(x) = 1

r
A′(x) and B(x) = 1

s
B′(x) for some r, s ∈ R, with A(x), B(x) ∈ R[x]. Thus,

we have rs · p(x) = A′(x)B′(x).

Suppose d = rs ∈ R. If d is a unit in R, then p(x) = d−1A′(x)B′(x), and we get our
desired result. If not, then we may write d = p1 · · · pk where each pi ∈ R is irreducible.
We’re going to show that each pi also divides the right side in R[x], which will give us our
desired result.

To show the right side is divisible by pi, we will consider the equation in the quotient
ring R[x]/(pi). By the above lemma, every irreducible is prime, so each pi is prime. This
means R/piR is an integral domain, which further means R/piR[x] = R[x]/(pi) is also an
integral domain.

Start with i = 1. We can reduce the equation rs · p(x) = A′(x)B′(x) mod p1 to get
0 = A′(x) ·B′(x). But we are working in an integral domain, so this means either A′(x) = 0
or B′(x) = 0. WLOG suppose the former. Then, all coefficients of A′(x) are divisible
by p1 ∈ R, so we can write A′(x) = p1 · A′′(x) for some A′′ ∈ R[x], and thus we have
p2 · · · pk · p(x) = A′′(x) ·B′(x).

Continuing this process, we can cancel out all the irreducibles pi to get p(x) = a(x) · b(x)
for some a(x), b(x) ∈ R[x], and we may conclude.

Author’s Note 21.9. The “continuing this process” is hand-wavy, I admit. The
proofs I’ve encountered are slightly more formal, but this is the general idea: you
factor the polynomial in F [x], scale each factor such that it lives in R[x], then take the
equation modulo the irreducibles in R to show that one of your factors is divisible by
the irreducible.

Corollary 21.10

Let R be a UFD, F its field of fractions, and p(x) ∈ R[x]. Suppose that the gcd of the
coefficients of p(x) is 1. Then, p(x) is irreducible in R[x] iff p(x) is irreducible in F [x].

Proof. By Gauss’s Lemma, if p(x) is reducible in F [x], then it it reducible in R[x]. Con-
versely, if p(x) is reducible in R[x], then p(x) = a(x)b(x) where a(x), b(x) ∈ R[x] are not
units. Even better, they are non-constant since the gcd of the coefficients of p(x) is 1. (If
a(x) = c were a constant, then c would divide every coefficient of p(x).) Thus, a(x), b(x)
are non-units in F [x], so p(x) is reducible in F [x].

Great, NOW we can finally prove Theorem 21.1.

Proof. Showing that R[x] is a UFD requires that for every f ∈ R[x], there exists a factoriza-
tion of f(x) and that factorization is unique. First, we will show existence of factorization
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for any element in R[x]. Take any f ∈ R[x]. Suppose the gcd of the coefficients of f is d,
so we have f(x) = d · g(x) for some g ∈ R[x]. Then, if we have a factorization of g, then
we have a factorization of d · g(x) = f(x), so it suffices to show that any polynomial whose
coefficients have gcd 1 has a factorization.

For notational purposes, we will call the gcd of the coefficients of f as the content of f ,
denoted c(f). So we can assume c(f) = 1.

Let p(x) ∈ R[x] such that the gcd of its coefficients is 1. Thinking of p(x) ∈ R[x]
as a polynomial in F [x], where F = K(R), we have p(x) = p1(x) · · · pn(x), where each
pi(x) ∈ F [x] is irreducible. We will return to this later.

We know F [x] is a UFD, so we can factor p(x) = A(x)B(x) for some A(x), B(x) ∈ F [x].
We can clear out denominators in the coefficients of A and B by some constants c1, c2 ∈ F ,
respectively, such that Ã(x) = c1 ·A(x) ∈ R[x], B̃(x) = c2 ·B(x) ∈ R[x], and c(Ã) = c(B̃) =

1. Then, c1c2p(x) = ÃB̃. Note that since ÃB̃ ∈ R[x] and c(p) = 1, c1c2 must be in R.

If c1c2 is a unit, then we are happy. Else, ∃ a irreducible dividing c1c2. This means
that a | ÃB̃. Considering our polynomials in R/(a)[x] and noting that a irreducible (hence

prime) means R/(a) is integral, we have ÃB̃ = 0 in R/(a)[x], forcing one of them to be 0.

WLOG a | Ã, so a | c(Ã) = 1. But then a is a unit, a contradiction, so c1c2 is a unit.

Now return to p = p1 · · · pn in F [x]. Using our above work, we can scale each pi such
that p = c(p) · p̃1 · · · p̃n, where each p̃i ∈ R[x] is irreducible in F [x] and c(p̃i) = 1. But then
they are clearly irreducible in R[x], so we conclude the existence part.

Now we show that this factorization is unique. We know this holds over F [x], as F [x] is
a Euclidean domain, which is always a UFD. Let P (x) ∈ R[x]. If degP = 0, then P ∈ R,
and we conclude since R is a UFD. Suppose then that degP > 0, and suppose we have two
factorizations

P (x) = a1 · · · arq1(X) · · · qn(X) = b1 · · · bsq′1(x) · · · q′m(x),

where ai, bi are irreducible in R, and qi, q
′
i are irreducible in R[x] with degree > 0 and

c(qi) = c(q′i) = 1.

I’m going to gloss over a few details and just say that c(P ) = a1 · · · ar = b1 · · · bs ∈ R,
but R is a UFD, so these factorizations must be unique up to units. So it suffices to show
q1(x) · · · qn(x) = q′1(x) · · · q′m(x) are the same factorization up to units.

Thinking of this product in F [x] and using our above work to show that a polynomial
q(x) ∈ R[x] with c(q) = 1 is irreducible in F [x] iff it is irreducible in R[x], we have each qi, q

′
i

is irreducible in F [x]. Because F [x] is a UFD, we have n = m and, up to ordering of the
factors, qi and q

′
i are associates. Explicitly, ∃αi ∈ F (x)× = F such that qi = αiq

′
i. Writing

αi = ai/bi for ai, bi ∈ R, we get biqi = aiq
′
i. Taking the content of both, b = c(biqi) =

c(aiq
′
i) = a, so a = b up to units of R, meaning αi is a unit in R. We may thus conclude.

22 11/30 - Irreducibility Criteria

Last class lfg. We finished up the above proof at the beginning of this class, which I’m just
including in the above section instead of splitting the proof across two lectures.
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In the above proof, we work a lot with irreducible polynomials, which are nice when we
are given that they are irreducible. But it turns out that determining if a polynomial is
irreducible is a pretty tricky problem. Luckily, we have one super goated tool under our
belt: Gauss’s Lemma (Theorem 21.6) and the following Corollary (21.10). We’ll prove a
few more things:

Proposition 22.1

A polynomial of degree 2 or 3 over a field F is reducible iff it has a root in F .

Proof. We start with the forward direction. Let P = F [x], and suppose 2 ≤ degP ≤ 3.
If degP = 2, then P must factor into two linear terms, which means it has a root. If
degP = 3, then it either factors into three linear terms or a quadratic term and a linear
term. In either case, it has a linear term factor which means it has a root.

For the reverse direction, if P has a root, then P has a linear factor. Since degP > 1,
it follows that P is reducible, yay.

Now we will investigate cases where we attempt to recover information on irreducibility in
our original ring given information in a quotient ring. Recovering information on reducibility
is easy. As an example, take the polynomial P (x) = (X − 1)(x− 2) in Z[x]. Modulo p, for
some prime p, we get P (x) = (x − 1)(x − 2) in Z/pZ[x]. Thus, p is reducible implies p is
also reducible.

But for irreducibility, this is not so nice. If P (x) = (2x− 1)(X − 1) ∈ Z[x] and we take
p = 2, the in Z/2Z[x], P (x) = −(x − 1) which is irreducible in Z/2Z[x], whereas P (x) is
reducible in Z[x]. So we can ask,

If I know P (x) is irreducible in R/I[x], when is P (x) itself
irreducible in R[x]?

We answer:

Proposition 22.2

Let I ⊊ R be an ideal and R an integral domain. Let P (x) ∈ R[x] be a non-constant
monic polynomial. If P (x) ∈ R/I[x] cannot be factored into a product of two polyno-
mials of smaller degree, then P (x) is irreducible in R[x].

Proof. If P (x) is monic and reducible in R[x], then we can choose monic A(x), B(x) such
that P (x) = A(x)B(x). Taking modulo I, we have P = AB, but by our assumption we
must have (WLOG) degP = degA. But since A,B, P are monic and I ̸= R, we must have
degP = degA in R[x], so P = A and B is a unit.
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22.1 Eisenstein’s Criterion

A really nice condition for irreducibility in Z[x]. This will highlight the importance of
reduction modulo p in polynomials.

Theorem 22.3 (Eisenstein Criterion)

Let p be a prime in Z and f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 with n ≥ 2. Suppose

p | ai for all 0 ≤ i ≤ n− 1 but p2 ∤ a0. Then, f(x) is irreducible in Z[x] (and hence in
Q[x]).

We can generalize Eisensteion Criterion for any R UFD and p ∈ R irreducible, but we’ll
stick with the Z[x] case for now.

Proof. Suppose f is reducible in Z[x], so f = q0q1 where q0, q1 ∈ Z[x] are monic and
deg q0, deg q1 > 0. Reducing mod p, we have xn = f = q0q1 in Fp[x] (for people who have
not seen this notation before, Fp = Z/pZ is the field with p elements). Then, q0 = xr0 and
q1 = xr1 where r0 + r1 = n. Then, we can write

q0 = xr0 + br0−1x
r0−1 + · · ·+ b0

q1 = xr1 + cr1−1x
r1−1 + · · ·+ c0,

where p | b0, c0. But then a0 = f(0) = q0(0) · q1(0) = b0c0 and p2 ∤ a0 but p2 | b0c0, a
contradiction. This, f is irreducible.

Let’s apply Eisenstein’s Criterion on some concrete examples (yum!):

Exercise 22.4. Let f(x) = x3 +6x2 +12x+18. Show that f(x) is irreducible in Q[x].

Proof. Seems pretty hard a priori, but with Eisenstein’s Criterion in our hands, we just
need to consider mod p = 2. Note 2 | 6, 12, 18 but 22 ∤ 18, so f is irreducible.

A clever use of the criterion:

Exercise 22.5. Let f(x) = x4 + 1. Show that f(x) is irreducible in Q[x].

Proof. We can’t use Eisenstein directly, but the key observation is that a polynomial stays
irreducible under transformation, i.e. f(x) is irreducible iff f(x+ α) is irreducible. We can
compute f(x + 1) = (x + 1)4 + 1 = x4 + 4x3 + 6x2 + 4x + 2, and we can use Eisenstein’s
Criterion for p = 2 like above, yay.

Alright, that’s a wrap for the semester. Congrats on finishing! And good luck with finals :)
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