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Elliptic Curves Preface

0 Preface

This class is one of the “Cours Fondamentaux I” of the M2 Mathématiques Fondamen-
tales program at Sorbonne Université. Course times are Mondays from 9-1lam and
1-3pm, and the TD (travauz dirigés) sessions are on Tuesdays from 4:10-6:10pm. The
lectures are held at Sorbonne Université, Jussieu/Pierre and Marie Curie Campus. The
main textbook is Silverman’s The Arithmetic of Elliptic Curves. There will be a final
exam for this course.

There are inevitably some errors in these notes. Any errors should be attributed
to me, not the professor. If you see anything wrong or unclear, let me know at hahnl-
heem@gmail.com!

1 11/04 - Complex Elliptic Curves

1.1 Why do we care?

1Tt is difficult to understate the importance of elliptic curves in modern number theory.
Andrew Wiles’s proof of Fermat’s Last Theorem boiled down to proving a statement
about elliptic curves; in particular, he proved that every so-called semistable elliptic
curve over Q “comes from” a modular form. One of the Millenium Problems, the Birch
and Swinnerton-Dyer Conjecture, poses that the order of zero at s = 1 of the L-function
L(E,s) attached to an elliptic curve E over some number field K is equal to the rank
of the group of K-points E(K) on the elliptic curve. This is still a wide-open problem,
although the cases where the order (and thus the rank) is 0 or 1 are proven using quite
advanced machinery.

These two examples alone suggest that lots of unexpected arithmetic information
can be extracted from the geometry of elliptic curves and the analytic properties of its L-
functions. Considering elliptic curves over different kinds of fields (C, finite extensions
of F,, Q, Q,) each yield their own beautiful and unexpected stories. We will study
elliptic curves in these various settings, beginning with C.

1.2 Elliptic Functions

First, we offer a definition of an elliptic curve, although we will not explain all terms
just yet.

Definition 1.1 (Elliptic Curve). An elliptic curve over a field K is a smooth projec-
tive curve over K of genus 1.

If K = C, then how may one produce a smooth complex curve of genus 17 From
topology, one example is a complex torus, which we can form by taking some paral-

T actually missed this part of lecture, but I am supplying my own (terse) motivations here.
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Elliptic Curves 11/04 - Complex Elliptic Curves

lelogram and identifying opposite edges. We can identify a parallelogram in C as the
space of representatives for C/A, where A C C is some lattice. A good way to study
some space is to study functions on that space, so we seek to understand meromorphic
functions on C/A. This is equivalent to studying meromorphic functions on C which
are periodic with respect to some lattice. We now define these words.

Definition 1.2 (Lattice). A lattice A C C is a discrete subgroup which contains an
R-basis of C.

Let A C C be a lattice. By the above, we can write A = Zw, ® Zw, for some R-basis
{w1,ws} of C. In other words, we require w;/wy ¢ R.

Definition 1.3 (Fundamental Domain). A fundamental domain for a lattice A =
Zwy D Zwy is a subset of C of the form

D:{a+t1w1+t2w2]O§t1-<1,a€(C}.

Note by construction that every z € C has a unique representative z’ € D such that
z =7 (mod A).

Definition 1.4 (Elliptic Function). An elliptic function with respect to A is a mero-
morphic function f on C, i.e., f: C — P}(C), such that f(z + w) = f(z) for all z € C,
w € A. We denote C(A) as the set of all such functions; this is a field.

Note that we study meromorphic functions because holomorphic elliptic functions
are very restrictive. In fact, any elliptic function without a pole (resp., without a zero)
is constant. This is because f is periodic with respect to A, so

sup | f(2)] = sup | f(2)] < o0,
z€C z€D

where the inequality follows because D is compact. The claim now follows from Liou-
ville’s Theorem.

The elliptic criterion comes with enough restrictions of its own, which lends to the
study of complex elliptic curves being so elegant.

Theorem 1.5. Let f € C(A)* and D be a fundamental domain for A. Then,

L. > ,epResz(f) =0;
2. > epord,(f) =0;
3. Y sepordz(f) -z €A

Proof. Note that f is defined the same for all choices of fundamental domain, we can
arbitrarily choose D. We will choose D such that there are no zeros or poles on 9D.
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Elliptic Curves 11/04 - Complex Elliptic Curves

(This is possible because the poles and zeros should be isolated by standard complex
analysis.) Let the vertices of D be {a,a + wy,a + wa, a + wy + wa}.

The first statement is an application of the Residue Theorem, which tells us

ZResx =5 /3D f(2)dz,

which we can decompose as

a+w1 a+wi+wsa a+wo a
dz = d d d d
RO A f@>z+/“ f@>z+/' fdzt [ f(2)de

at+wi a+wi+tw2 a+wsa

Consider the second integral on the right. Translating by —w; gives

[ e [ = [T e

+wiy

which cancels out with the fourth integral. Likewise, the third integral cancels with the

first, so indeed > Res,(f) = 0.

The second statement follows directly from the first. Indeed, if f is elliptic, then
f'/f is also elliptic, and the result follows from Res,(f’'/f) = ord,(f).

For the third statement, the key idea is to use the fact ord,(f) - z = Res,(z
f'(2)/f(z)). Note that the function inside the parentheses on the right is not an elliptic
function! But by the Residue Theorem, we always have

Zordx(f)‘ - f/()

2w o F
zeD
atws £/ a-+wi /
e M), e [T,
2mifo f(z) 0 2mi). o [f(2)
It must be true that ;- f:+w2 ’;((ZZ)) dz € Z. This is the case because if v : [0, 1] — C*

is a closed loop, then f7 & ¢ 2miZ. We then use this on the path y(t) = f(a + tws) to
get > ord,(f) € Zwy @ Zwy = A. O

Corollary 1.6. A non-constant elliptic functions has at least two poles, counting mul-
tiplicity.

Proof. 1f f has only one simple pole at x, then Res,(f) = 0 by formula (1) above. Thus,
f is holomorphic, hence constant. O]
1.3 The Weierstrass p-function

Let A C C be a lattice. Define the Eisenstein series of weight 2k as

Gu(h) = Y

0#weA
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Elliptic Curves 11/04 - Complex Elliptic Curves

This is clearly elliptic. The problem with this when & = 1 is that we can no longer
guarantee convergence. We get around this by defining the special function which is
the Weierstrass p-function:

Proposition 1.7. These functions are absolutely convergent. In particular,

1. Gor(A) absolutely converges for k > 1.
2. px absolutely and uniformly converges on all compact subsets of C — A.

3. pa is an even elliptic function with a double pole of residue 0 on all lattice
points of A.

Proof. For absolute convergence of the Eisenstein series, we will write
1 1
Gu(N)= D =+ D o
0<|w|<1 Jlw|>1

The first sum clearly converges (it is a finite sum), while we can bound the second by

1 N H#H{weA:N<|w<N+1
Z e SZ#{ N_le | + }
|w|>1 N=1

But the numerator can be bounded linearly in terms of N (roughly, this follows from
(N +1)? — N? being linear in N), so the sum on the right in turn is bounded above by
> nsq ¢/ N#71 which we know converges for k > 1.

For (2), we employ something similar. We split up the sum into two sums, the first
ranging over |w| < 2|z| and the second over |w| > 2|z|. Again, the first sum is finite,
while for |w| > 2|z|, we have

1 1

2122 — w < 10|z
JwPle—wP T fwl?

(z —w)?  w?

since |w| > 2|z|] = |z —w| > |w|/2 and |2w — z| < 2|w|. On compact subsets, |z|
is bounded, and the result follows because the sum ), N |w|™3 converges absolutely
and uniformly.

For the last part, the evenness and statement about the double poles with residue
0 are evident. It remains to show @, (z) is elliptic. We do this by showing that the
derivative ¢'(z) is elliptic first. We have

Ph2) =23 .
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Elliptic Curves 11/04 - Complex Elliptic Curves

which is clearly elliptic. Thus, we have pj(z +w) = px(2) + C(w) for some function C
on w. But using z = —w/2 gives pp(w/2) = pa(—w/2) + C(w); from evenness of @,
it follows that C'(w) = 0 so g, is elliptic. O

Just like how all singly-periodic functions can be written in terms of sin and cos,
we can write all doubly periodic functions using pa and ¢/,. Also, I will start dropping
the A from p, if it is well-understood.

Theorem 1.8. C(A) = C(pa(2), ¢\(2)). In other words, any elliptic function can

be written as
R(pa(2), ph(2))
Q(pa(2), Pi(2))’

R,Q € C[X,Y].

Proof. Note first that we can write any elliptic function f as

oy = HELHIED SO )

The first summand is an even elliptic function, while the second is odd elliptic. Note
that if g is odd elliptic, then ¢/(z) - ¢ is even elliptic. It now suffices to show that any
even elliptic function is rational in p(z).

Suppose f is even. This means (1) ord,(f) = ord_,(f), and (2) if 2z € A, then
ord,(f) is even. (For the latter, note in general that f(™(z) = (—1)"f™(—2), but if
2x € A, then by invariance of f and its derivatives under the translation z +— z — 2z,
we have f(z) = f™(—z). This forces f™(z) = 0 when n is odd, so ord,(f) must be
even.)

Let D denote the fundamental domain with vertices a, a+w, a+ws, and a+w; +wo,
and let H denote the lower half with vertices a, a +wi, a + %, and a +w; + %. Define

ord,(f) 2z ¢A

g=)= 11 (@) —p)™,  n,= {lord (f) if2cel’

weH—{0}

Note that this is a finite product as there are only finitely many poles (and thus zeros)
in H.

We claim that g(z) = f(z). Observe that the function p(z) — p(w) has a double
pole at 0, and thus it has two zeros by > ord,(f) = 0. By evenness of p(z), we see
that the two zeros are z = w and 2z = —w.

But then by construction, f and g have the same poles and zeros with the same
multiplicity, including at z = 0. Thus, f(2)/g(z) is elliptic and holomorphic, meaning
it is constant. The conclusion then follows. O]

We now calculate the Laurent series of pa(z) around z = 0. If |2| < |w|, then for
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Elliptic Curves 11/04 - Complex Elliptic Curves

all w € A, we have

_<Z_1w)2_%:%(ﬁ_1> =$n2<n+1> (2)

w

which we can do as |z| < |w| = |z/w| < 1. We thus deduce that around z = 0,

0#weA n=1
R — n
=5+ D (n+1)Gria(A)z
n=1
1 = 2k
= ? -+ (21{? + 1)G2k+2(A)Z )
k=1

so the coefficients of the Laurent series are given by the Eisenstein series.

Since C(A) = C(pa(2), )y (2)), we must be able to express @/ (z)?, which is even, in
terms of pa(z). This is the algebraic relation, which gives a model (the Weierstrass
model) of an elliptic curve:

Proposition 1.9. For all z € C — A, we have
©'(2)? = 4p(2)° — 60G4(A)p(z) — 140G (A).
Remark 1.10. We denote go(A) := 60G4(A) and g3(A) == 140G¢(A).
Proof. We can explicitly compute

1 2
o(z) = ?+3G4z +---
s 1 9G4

4 24G
2 4
p/(Z) —E— 24 —80G6—

We see then that
©'(2)? — 4p(2)® + 60G,0(2) + 140G = O(2?),

but any holomorphic elliptic function is constant, and checking the constant term en-
sures the error term is indeed 0. O

Consequently, we obtain a holomorphic map
C—A—{(z,y) €C*: ¢y’ = 42° — gou — g3}
2= (pa(2), Pa(2)),
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Elliptic Curves 11/04 - Complex Elliptic Curves

which extends to
C—{[x:y:2] € PC): y’*z = 42® — gowz® — g32°}

zﬁ{m@:n@:uim¢A
[0:1:0] if z € A,

We want this map to be bijective and for the image to be smooth, in which case
this lattice A would somehow give us a one-dimensional curve in P?(C).

Proposition 1.11. The polynomial 42% — g,z — g3 does not have a double root.
Equivalently,
A(A) = g3 — 2793 #0.

Proof. Take periods wy,ws, and let w3 = wy + wy. Since @’ is odd, we know

Gn/2) = ¢f (5 =) = ¢/ (w1 /2) = =¢/(w1/2),

so ¢'(w1/2) = 0. Likewise, ¢'(we/2) = ¢'(w3/2) = 0. Since ¢’ has a triple pole at
0 € C/A, the roots of ' are the nonzero 2-torsion points of C/A. Thus, from the
Weierstrass model ©'(2)? = 4p(2) — g2p(2) — g3, we get that the roots of 4z — gox — g3
are exactly p(w;/2) for i € {1,2,3}. It just suffices now to show that the p(w;/2) values
are all distinct.

But note that the function p(z) — p(w;/2) is elliptic with a double pole at z = 0,
and its roots are at w;/2 and —w;/2 = w;/2. Hence, it has a double zero at z = w;/2,
meaning any other z = w;/2 cannot be a root. O

Proposition 1.12. The map
¢:C/A — E C P*(C)
0—1[0:1:0]
2 [p(2) : '(2) 1],

where F is given by the homogeneous polynomial y?z = 422 — gax2? — g32°, is a
biholomorphism.

Proof. This is really a fact about compact Riemann surfaces. We already established
this function is holomorphic, so we just demonstrate it is bijective.

We first prove injectivity. Suppose p(z1) = ¢(22), so p(21) = p(22) and @/(z) =
@ (z2). If 221 ¢ A, the function p(z) — p(z1) must have roots at z;, —z1, 2o, which are
all distinct by assumption. But it can only admit two roots, so zo = +2z; mod A. Now
use ©'(z1) = p'(22) to deduce the positive sign. If 227 € A, then p(z) — p(z1) has a
double zero at z1, so automatically we get z; = 2z in C/A.
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Elliptic Curves 11/04 - Complex Elliptic Curves

Now we prove surjectivity. Suppose (z,y) € C? satisfies y? = 423 — gox — g3. The
function p(z) — x is a non-constant elliptic function, so it must have zeros at z = +a
for some a € C. Thus, z = p(a), which makes y* = ¢/(a)?. We can replace a with —a
if necessary to get (z,y) = (p(a), p'(a)), done. O

We now determine whether E C P?(C) is smooth. Recall that a curve given by
f(x,y,2) = 0in P*(C) is smooth (non-singular) if and only if df/dz, Of /0y, Of |0z,
and f do not have any common roots. But note that the only root of df/dy = 0 is
2y = 0 = y = 0, which means 42> — g,x — g3 must have a double root, which
we established is not the case. So in fact the curves we have produced from a given
lattice A are smooth projective curves. Noting that C/A is a complex torus and hence
has genus 1, we assert that the curve defined by the Weierstrass equation is an elliptic
curve.

1.4 Uniformization Theorem

So far, we have described a way to construct an elliptic curve given a lattice. It turns
out that all elliptic curves arise from lattices.

Theorem 1.13 (Uniformization Theorem for Elliptic Curves). For all a,b € C
with a® — 270 # 0, there exists A C C such that a = go(A) and b = g3(A).

More explicitly, the map C/A = E sending z — [p(z) : ¢/(2) : 1] admits an inverse
map given by

E—C

P
d
Pr—>/—x.
o Y

We can see where the dz/y comes from: if we take the parametrization z = p(2)
and y = /(z), then ‘Z—”’ = pp((z
P.

However, the integral depends on the choice of path from 0 to P! Let us describe this
dependence more carefully. Let v; and 7, be two closed loops generating the complex
torus E. (If we start with C/A, where A = Zw; & Zw,, we can take the paths from the
origin to wy and wsy, respectively.) Then, this integral is well-defined modulo

d
JESIE
71 72

We call the two integrals f 4z the periods of the elliptic curve. These two periods

define a lattice A, so we have a map E — C/A sending P fP d; mod A. This is
the inverse of ¢ from above.

= dz, so we would just be taking the length from 0 to

Hahn Lheem Page 10
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Remark 1.14. The one-dimensional analogue of this is familiar: the group morphism

C — C* sending z — €* induces an isomorphism C/27miZ — C*, which has an inverse

z dt
logz= [ .

1.5 Moprhisms of Complex Elliptic Curves

The Uniformization Theorem tells us that all complex elliptic curves are of the form
C/A for a lattice A C C. We wish to express morphisms between complex elliptic
curves in terms of their respective lattices. Let A, Ay C C be two lattices. If « € C
such that aA; C Ay, then

fa: C/Ay — C/Ay

A
is a holomorphic map with f,(0) = 0.

Theorem 1.15. The map between {a € C | «A; C Ay} and holomorphic functions
f:C/A; — C/Ay with f(0) =0 given by a +— f, is a bijection.

Proof. For injectivity, we have f, = f3 = az = fzmod A, for all z € C. But
then this means the multiplication-by-(ov — #) map is a continuous map between C
(connected) and Ay (discrete), so it must be the constant zero map. Thus, a = .

For surjectivity, first denote ; as the projection map C — C/A;. Can we find some
f C — C such that fom = 7T2 o f7 For this, we use the lifting property, which
says that given ¥ 2 X and X' & X (with h(yo) = p(xy) = x0), the map h factors
through p if and only if h. (71 (Y, v0)) C pe(m (X', 2()). In particular, we can always lift
if m1(Y,y0) = 0, aka when Y is simply connected.

Given this lift, we have f(z +w) = f(z) mod A, for all z € C and w € A;. But
then the difference f(z +w) — f(2), as a function in z, has image contained in Ay, so it
is constant since f is continuous. Continuing, we now have f’ (z4w) = f’( ), meaning
f is elhptlc (periodic with respect to Ay) and holomorphic, hence constant. Thus, we
may write f(z) = az + v for some a,7 € C. The condition f(0) = 0 forces v = 0, so
f(z) = az and so f = f,, as desired. O

Corollary 1.16. C/A; and C/Ay are isomorphic (by a map which sends 0 to 0) if and
only if there exists some o € C such that aA; = As.

Our discussion of complex elliptic curves has been quite nice so far because we can
express everything in terms of lattices in C. But although these lattices are nice to
work with, they don’t seem to exhibit much structure collectively. But we have a very
nice way of parametrizing these lattices.

Consider the Poincaré upper half-plane H = {z € C | Imz > 0}. This admits an
SLy(R)-action by linear fractional transformations.

Hahn Lheem Page 11
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Proposition 1.17. We have a bijection

H/ SLy(Z) <> {lattices in C}/C*
T L ® Lr.

Proof. Suppose Zwy @ Zwy = Zwy®Zwy. Then, as w], w) both belong in the first lattice,
we have a, b, c,d € Z such that

a bl |w wi
wi = awy +bwy,  Wh = cwy + dwy = [c d] [wz] - [W;] '

Likewise, since wy,ws both lie in the second lattice, we have o', V', ¢, d" € Z such that

a U |w| |w
dd||wh|  |wel|”
It follows that v = [2 4] € SLy(Z), and that v - (w1 /w2) = W} /wh. Thus, if Z @S Z1 ~

Z & Z7' are equivalent up to scaling by C*, then there must exist some v € SLy(Z)
such that v -7 =7,

The converse can be easily checked: if 7/ = 47 for some v = [2 ] € SLy(Z), then
ZOL7 ~7Z(at+b)DZ(cT+d) C Z @ Zt, and equality is achieved since 7 is invertible.
This completes the proof of the bijection. O]

1.6 Aside: Complex Multiplication

This is inspired from one of the TD problems, so it was not part of the lecture. Let
Ay = Ay = A, and let E = C/A. The above tells us that End(E) = {a | aA C A}. It is
clear that any a € Z works, so Z C End(F) automatically. In fact, one can note that
End(E) is an endomorphism ring (addition is clear, multiplication is composition), so
it must include Z.

Most often, it turns out we have equality Z = End(E). Elliptic curves with admit
more endomorphisms than just Z are said to have complex multiplication. We can
give a taste to what these elliptic curves with complex multiplication look like.

Suppose a € C — Z satisfies aA C A. Write A = Z & Z7. This means that there
exist a, b, c,d € Z such that

ar=ar+b, a=cr+d = (ct+d)T =a7 + Db,
so T satisfies some quadratic relation. Even better, taking the characteristic polynomial
of [2 5] gives a monic quadratic relation for a, explicitly (¢ — a)(d — a) — bec = 0. So

End(F) is an order of the ring of integers Ok of some imaginary quadratic field K. If
a € H such that a € End(E) for some elliptic curve E, then we call & a CM point.

Hahn Lheem Page 12
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If we were to find elliptic curves that admit automorphisms besides {+1} C Z, then
we have even fewer options. Using the same as above, the equality aA = A forces
[2 8] € SLy(Z), and so the characteristic polynomial becomes

(a—a)(d—a)—bc=a*>—(a+d)a+(ad—bc)=a*— (a+d)a+1=0.

In order for & € C— R, we need (a +d)? < 4, which restricts our possibilities to (1)
a>+1=0,2)a®>—a+1=0, and (3) a®> + a+ 1 = 0. Equivalently, we have either
a=ia=w="Y3 Lty=3

If a is any of the above values, then note that -1 € A = Z @ Z7. One can check
that the lattice Z @ Zi admits an automorphism given by multiplication by 4, and the

lattice Z & Zw = Z & Zp admits two given by multiplication by w and p.

,or @ = p =

In general, suppose F = C/A admits an automorphism given by multiplication by
i. Then, we can consider the Eisenstein series Gg(A); the sum of 1/A% over each orbit
given by multiplication-by-i is 0, and so Gg(A) = 0. This means FE has a Weierstrass
equation of the form y? = 423 — g,x, which after scaling gives y?> = 2® — x. Indeed,
one can check (z,y) — (—z,iy) is an automorphism. Likewise, if F = C/A has an
automorphism given by multiplication by p (and hence by p? = w), then we can consider
the sum of 1/\* over all orbits from multiplication-by-w to conclude G4(A) = 0. Thus,
the Weierstrass equation for F is y*> = 423 — g3, which clearly has an automorphism
(2, y) = (wz,y).

The property that End(F) 2 Z may not seem remarkable at first, but elliptic
curves with complex multiplication satisfy some beautifully remarkable properties. For
instance, the j-invariant of £ with CM is guaranteed to be an algebraic integer. Fur-
thermore, if End(E) ® Q = K (we already established K must be imaginary quadratic),
then j(E) generates the Hilbert class field of K. One can tie these facts to show that
transcendental numbers like e™V163
able (and still expanding) story!

are very close to an integer. It is quite the remark-

2 11/12 - Generalizing the Theory of Riemann Sur-
faces

Author’s Note 2.1. Monday, November 11 was a holiday, so the usual TD session
on Tuesday was replaced with a lecture. TDs will resume next week, and the missed
lectures will be made up on December 16.

The study of compact Riemann surfaces, as we have already seen, is key to studying
elliptic curves over C. We seek to generalize results of Riemann surfaces to allow us to
work with elliptic curves over other fields. Luckily, the most important theorem about
Riemann surfaces holds in much greater generality:
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Theorem 2.2 (Riemann-Roch). Let C' be a smooth projective curve of genus g
over an algebraically closed field K = K. Let D be a divisor on C. We have an
equality

D) —U(Keg—D)=degD — g+ 1.

Usually, we will be working in the case where an elliptic curve C lies over a per-
fect field K such that K/K is a Galois field extension. (Note by perfectness, it is
automatically separable.)

In this spirit, let C' be a smooth projective curve over a perfect field K. Denote K (C)
as the field of rational functions on C. Explicitly, it is given set-wise as equivalence
classes of pairs (U, f) where U C C' is Zariski-open and f € O(U) is a continuous
f:U — K. We have the inclusions

m, C O¢, C K(C),

where O, is the local ring at p given by the set of germs at p, and m,, is the maximal
ideal of O¢,, given by all germs vanishing at p. Note we have K(C') = Frac(O¢,) and
Oc,p / m, =~ K.

We have an algebraic way of expressing the smoothness condition. We say C' is
smooth if for all p € C,

dim Oc,, = dim(m,/m2) = 1,

where the left is the Krull dimension (length of maximal chain of prime ideals) and
m,/ m]% on the right can be seen as the dual of the tangent space at p. This agrees with
our geometric understanding of smoothness.

2.1 Divisors

Definition 2.3 (Divisor, etc.). A divisor on C is a formal linear combination of the
form

D= Z np|P], np € Z, np = 0 for all but finitely many P € C(K).
PcC(K)

We denote the free abelian group of divisors on C' as Div(C'). The degree of a divisor
is deg(D) = > pnp. (Note this is a finite sum of integers.) A divisor is effective if
np > 0 for all P € C(K), in which case we write D > 0. This defines a partial ordering
on Div(C) where Dy > Dy <= Dy — Dy > 0.

If C is defined over K, then we can access K from K by considering the Galois
action Gal(K/K) on C(K). This Galois action extends to an action on Div(C) in the
obvious way: (D) = )" ,nplo(P)]. We say that a divisor D is defined over K if it is
fixed by this Galois action, i.e., if 0(D) = D for all ¢ € Gal(K/K). In particular, we
can access C'(K) by looking at the fixed points of C'(K) under the Galois action.
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Example 2.4. Let C = P'; it is clearly defined over Q. Over Q, we see the divisor
D =1[(v2: )]+ [(—V2 : 1)] is defined over Q, as any Galois action either fixes each
term in the sum or swaps them.

We can associate a function f € K(C) with a divisor. The key is that, up to scaling,
a function on a compact Riemann surface is determined by its poles and zeros, counting
multiplicity. For elliptic curves over C, this follows from the fact that any entire elliptic
function is constant. In the general setting where C is replaced by any perfect field K,
we attempt to draw up a similar lexicon. Let C' again be a smooth projective curve
over perfect K. Define the following “order” map by

ord, : Ocy — Zso U {oo}
[ max{d| f € ml}.

Note that we have the properties

ord,(fg) = ord,(f) + ord,(g), ord,(f + ¢g) > min{ord,(f),ord,(g)}.

This makes O¢,, into a discrete valuation ring with valuation given by the
ord map. We can extend this valuation to the fraction field K (C) = Frac(Oc¢,) by
ord,(f/g) = ord,(f) — ord,(g). This turns our order map into

ord, : K(C) = Z U {oo}
f/g = Ordp(f) - Ol“dp(g).

Definition 2.5 (Regular, Zero, Pole). If ord,(f) > 0, we say f is regular at P and
one can evaluate f(p) € K. If ord,(f) > 0, we say f has a zero at p. Otherwise, if
ord,(f) < 0, then we say f has a pole at p.

Note that there are a finite number of zeros and poles, i.e., given f € K(C)*, the
set of points P € C(K) with ordp(f) # 0 is finite. This is because the set of zeros
{p | f(p) = 0} is Zariski-closed, hence finite, and so the number of poles is also finite
by considering 1/f.

Now we are able to define the divisor of a function.

Definition 2.6 (Divisor of Function). Let f € K(C)*. The divisor of f is

div(f)= > ordp(f)-[P].

PcC(K)

Proposition 2.7. If C' is a projective curve and f € K(C)*, then deg(div(f)) = 0.
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We have exhibited a Galois action of Gal(K/K) on C(K). We can now define it
on K(C) (or on the structure sheaf O¢) as follows. Given some f : U — K (i.e.,
f € O)), we define the Galois action as o(f)(z) = f(o(x)). Note that if o(x) € U,
then z € o71(U), so o(f) € O(c7}(U)). Note that one can directly show

div(o(f)) = o(div(f)).
Thus, if f € K(C), then the divisor div(f) is well-defined as a divisor over K since

o(f) =1

Definition 2.8. Let D € Div(C). Denote

£(D) = {f € K(C)* | div(f) = —D} U{0}.
This is a K-vector space.

Example 2.9. If D = n - [P], then the nonzero elements of £(D) are the functions f
which are regular outside of P and has a pole of order at most n at P.

Lemma 2.10. If C is projective, then L(D) has finite dimension over K.

Proof. If Dy < Ds, then div(f) > —D; implies div(f) > —Ds, so £(Dy) C L(Dy). Tt
thus suffices to prove the statement for D > 0. We will show in particular that

dim £(D) < deg D + 1.

We do this by induction on deg D. If degD = 0, then D = 0 since D > 0 by
assumption, meaning £(D) = O(C) = K. Now if D > 0, then there exists P € C(K)
such that D—[P] > 0. If £L(D) = L(D—[P]), then we are done by induction. Otherwise,
we have L(D — [P]) € L£(D). In this case, we can choose a uniformizer ¢ in P such
that ¢ generates m,. In particular, we have ordp(t) = 1. Denoting np as the multiplicity
of P in D, we define a map

L(D) = K
g ("7 g)(P).
This is surjective, as it is a nonzero K-linear map. Note that £(D — [P]) lies in
the kernel of this map. Thus, as K-vector spaces, we have £L(D) = L(D — [P))® K - f

where f € L(D) — L(D — [P]). Now we may conclude by the inductive hypothesis on
L(D — [P]). O

Remark 2.11. These vector spaces £(D) in the context of Riemann surfaces can be
realized via sheaf cohomology. The cohomology may vary depending on the context,
but in principle we have £(D) = H°(C, O(D)).

Remark 2.12. If deg D < 0, then £(D) = {0}.
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A group of particular interest to us is the Picard group, given as Pic(C) =
coker (K (C)* A, Div(C)). In other words, if Prin(C) is the group of principal divi-
sors, i.e., divisors of the form div(f), then we have Pic(C) = Div(C')/ Prin(C). It fits

into the following exact sequence:
15K = K(C)* L% Div(C) — Pie(C) — 0.

Note that £(D) is invariant under action by Prin(C). Explicitly, for any g € K(C)*,
we have L(D+div(g)) ~ L(D) given by f — fg. This is well-defined because div(f) >
—D —div(g) = div(fg) = div(f) + div(g) > —D. In other words, we see that
dim £(D) depends only on the equivalence class of D in Pic(C).

Lemma 2.13. Let C be a smooth projective curve defined over K. If D is a divisor
defined over K, then L(D) admits a basis of functions in K(C).

Proof. Note that £(D) admits a Gal(K /K)-action since for f € £(D), we have o(f) €
L(c(D)) = L(D). The result now follows from the following lemma:

Lemma 2.14. Let V be a K -vector space with a continuous semilinear Galois action.
(These are defined below.) Let
VEIE/K) — {y e V | o(v) = v for all o € Gal(K/K)}

be the subspace of Galois-invariant vectors. Then, we have an isomorphism

VGal(F/K) ®K K i v
V& A Av.

Definition 2.15 (Continuous, Semilinear Action). We say the Galois action is con-
tinuous if for all v € V| the subgroup {o € Gal(K/K) | o(v) = v} has finite index. It
is semilinear if it satisfies o(Av) = o(\)o(v).

For the proof, I will denote V¢ as shorthand for VGa(K/K) gince the (Galois) group

is well-understood.

Proof. It suffices to show that any v € V can be written as a K-linear combination of
elements of V.

Let H = {0 € Gal(K/K) | o(v) = v} C G. Since H has finite index in G by

continuity, the fixed field K™ is a finite extension of K. Let L be its Galois closure.
We now choose a K-basis oy, ..., a, of L. Writing Gal(L/K) = {o1,...,0,}, we define

a vector
n
w; = Z%‘(%‘U)-
j=1

Hahn Lheem Page 17



Elliptic Curves 11/19 - Differential Forms

By construction, we have o(w;) = w; for all ¢ € G, so w; € V¢, By semilinearity,
we can thus write

w; = Z o;()o;(v).

But the matrix (o;(c;));,; is invertible! (One way to obtain this is by letting L =
K(a) by the Primitive Element Theorem, then the basis a; = o~ turns the matrix
(0j(c)); into a Vandermonde matrix, whose determinant we can explicitly compute
to be non-zero.) This means that all o;(v), and in particular v itself, can be written as
a K-linear combination of w;. O

To show that £(D) indeed has a K-basis contained in K (C'), we just need to show
that the Galois action on £(D) is continuous semilinear. For continuous, note that
divisors are finite sums, so the stabilizer of some divisor in £(D) must fix some finite
extension of K. As the action is evidently semilinear, we may conclude. O

3 11/19 - Differential Forms

3.1 Differential Forms

We also develop the notion of differential forms algebraically.

Definition 3.1 (Kahler Differentials). Let A — B be a ring morphism. The module
of Kahler differentials, denoted €)p,4, is the quotient of the free B-module generated
by the symbols db for all b € B by the sub-module generated by the elements of the
following form:

1. d(b+ V) —db—db (linear);
2. d(bb) — bdb' — b db (Leibniz):
3. da for all a € A (“constants”).

Definition 3.2 (Derivation). We call any A-linear map B — M satisfying the three
above conditions an A-derivation.

We have a natural B-module morphism d : B — {2g/4 given by b + db. By definition,
this is an A-derivation. It satisfies the following universal property:

B L) QB/A
E
+

M

D

Here, M is a B-module and D is an A-derivation. The induced map is a B-module
morphism.

Let’s look at several explicit examples.
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Example 3.3 (Differentials on Polynomial Ring). If B = A[zy,...,z,], then we have
Qp/a = Bdx, ® -+ @ Bdx, with a map

d: B— QB/A
frdf = Zax
If we consider a quotient, i.e., B = Alxy,...,x,]/(f1,..., fm), then we have

Opja=Bdn @& Bduw [, gp,.).
with a similar map B — g4 as above. These follow from the exercise below.

Exercise 3.4. (from TD3) Let B be generated by (z;);c; as an A-algebra. Then, Qp/4
is generated as an B-module by (dz;)cs.

Proof. For d > 0, let B; C B be the A-module generated by all polynomials in the x;’s
of degree at most d. We can prove using induction that

d(By) C Y Bda;.
icl
This would imply equality d(B) = ), B dz;, since clearly the right is contained in the
left.

The base case d = 0 is clear, so suppose it is true for d — 1. Let g € By; we can
write g = ¢+ Y ; ;g;, where ¢ € A is constant and ¢g; € B;_;. Then, we have

dg = Zd(xigi) = Zgi dw; + sz dg;.

iel iel iel
As both sums on the right are in ) ; B dx;, the inductive step is done. O

To make the connection with the above example explicit, let us determine g 4
when B = Az, ..., x,]. By the exercise, we know Qp/4 is generated by (dw1, ..., dx,).
We want to show that this module is free. But we see that for each i, we have the
derivation Oz; : B N Qp/a LN B dz;, where 0;(dz;) = 6;;. Thus, if 0 = "7 | a;dx;,
then applying ; would force a; = 0, so this module is free.

Example 3.5 (Differentials of Field Extension). Let f € Q[z]| be a polynomial with no
double root, and consider K = Q[z]/(f) D Q. Then, Qg is generated by dxr modulo
df = f'(x)dx. But as f and f’ are coprime to each other, we can find P, Q) € Q[x] such
that Pf + Qf' = 1. In particular, this means @ f' = 1 mod (f), i.e., f’ is invertible in
K. Thus, dr =0 1in QK/Q, and so QK/Q = 0.

In general, if L/K is a finite field extension, then Qp/x = 0 iff L/K is separable.
For an example of a inseparable extension, one can show that Qg () /5, @) = Fp(t) dt.
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Example 3.6 (Differential on Curve). Consider the plane curve X = Al — {0} — A%
given by zy — 1 =0, and let B = K|z,y]/(zy — 1) = K[z,27!] be the field of functions
on X. Then, we have

O = Klosa | dw @ Klooo N dy [ qy 4y ar).

Well, we can explicitly compute from y = 1/z that dy = —ydf = —i—g, SO in

conclusion Qp/x = K|z, 27| dz.

Example 3.7 (Differential on Elliptic Curve). Let X C A% be given by y* = f(z) =
r3 + azx + b, and suppose f does not have a double root. Let B = K|x,y|/(y*> — f(z)).
Like in Example 3.5, we can find P, € K|[z,y| such that Pf + Qf = 1. Note from
y?> = f(x) we have 2y dy = f'(x) dz. Consider the differential

w = Pydx + 2Q dy.
We claim Qp/ = B - w. Indeed, we can explicitly construct dr and dy from w:

yw = Py*dx + 2Qy dy
=Pfdr+ Qf dx
= dx,
flw=Pflydr+2Qf dy
= 2Py dy +2Qf dy
=2dy,

as desired.

Of course, we are interested in the examples regarding (smooth) curves over some
field, so we will continue studying differentials on such curves. One should assume in
the following that K is algebraically closed.

Definition 3.8 (Meromorphic Differentials). Let C' be a smooth curve over K. We
define the space of meromorphic differential forms on C' as the K(C')-vector space

QC = QK(C’)/K

In the case when we consider the differential on a local ring, the differential gener-
ating the Kéahler module is given by the uniformizer of the local ring.

Proposition 3.9. Let C be a smooth curve over K and P € C(K). Let t be
a uniformizer at P. Then, the module of Kéhler differentials Qo ,/x is a free
Oc¢,p-module generated by dt.

More generally, these modules €2p,4 behave nicely with respect to localization.
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Exercise 3.10. (from TD) Suppose we have a ring map A — B and S C B is multi-
plicative. Then,

Qg-1p/a = 5_193/,4 = Qs-1B/(SnA)-14-

Proof. We first show the first isomorphism. We have the following commutative dia-
gram by the universal property of localization:

QB/A E— S_lﬂB/A

|
\ 13g
+

Qg-1p/a

We wish to show that the induced map is an isomorphism. Consider also the uni-
versal property of the Kahler module:

S—'B L) QS—lB/A

5 I
=
\V

SilQB/A

Here, ¢ is the derivation defined by
b 1 b
o (—) = —d(b) — 8—2d(s).

This comes from the Leibniz rule computation §(b) = §(s-b/s) = s-06(b/s)+b/s-d(s),

and we want to force 6 = d on B. One can manually check go h = idgsle/A and

hog=idg- so they are isomorphic. (This is basically by construction.)

1QB/A7
To show the second isomorphism, it suffices to show d((S N A)~'A) = 0. Let
s € SN A. Then, we have

0=d(a) =d(s-a/s) =sd(a/s) +a/s- dbs] = d(a/s) =0,
as desired. [

We also have

Exercise 3.11. (from TD) If A — B — (' is an an exact sequence of rings, then
C ®p QB/A — QC/A — QC/B — 0
is also exact.

Proof. This is just abstract play. We will use two facts:
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(i) The sequence of A-modules M’ — M — M" — 0 is exact iff for all A-modules
N, the sequence

0 — Homa(M", N) — Homa (M, N) — Hom(M', N)
is exact.
(ii) By the universal property, we have an isomorphism
Homp(Qp/a, N) = Dera(B, N).
Applying this to our given exact sequence and noting that Home(C' ®p Qpja, N) =
Homp(Q2p/a, N) = Dery (B, N), we get that the given sequence is exact iff
0 — Derg(C,N) — Dera(C, N) — Dera(B, N)
is exact for any A-module N. But this is clearly true. O]

Corollary 3.12. Let C' be a smooth curve. Then, Q¢ is a K(C)-vector space of di-
mension 1.

Proof. We use the second exercise. Take A = K, B = O¢p, S = Ocp —{0}, and C =
S~'B. Note that Qg-15,5 = 0, as any d(by/by) can be written as a linear combination
in terms of d(B). Thus, the second exercise gives an isomorphism

QK(C)/K = QS_lB/A = QB/A ®p ST B = QOC,P/K ®oc,p K(C).

The right hand side as a K(C)-vector space has dimension equal to the rank of
Qo p/x as a O¢ p-module. But we established that this is just 1, as it is generated as
an O¢ p-module by dt for ¢ a uniformizer of C' at P. n

3.2 Divisors of Differential Forms

Like how we defined div(f) for f € K(C)*, we can do something similar for Q¢ — {0}.

Let w € Q¢ — {0}. Take P € C(K) and t a uniformizer at P. Then, the above
shows that there exists g € K(C)* such that w = gdt. We now define

ordp(w) = ordp(g).

Note that this does not depend on the choice of uniformizer. Indeed, if ¢,t" are both
uniformizers of O¢ p, then we have dt’ € O¢ pdt and likewise dt € O¢ pdl’, and so
dt' € Of p dt which does not change ordp(g).

It is clear now, from our understanding of K(C'), that the set {P € C(K) |
ordp(w) # 0} is finite. We can thus define without issue

divw) = > ordp(w)-[P)].

PEC(K)
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This is the divisor of w.

If wy,ws € Q¢ are non-zero, then there exists f € K(C)* with w; = fwsy as Q¢
has dimension 1 over K(C'). We can thus write div(w;) = div(wy) + div(f). Thus, any
choice of w € Q¢ is equivalent modulo principal divisors, i.e., the class of div(w) in
Pic(C) is independent of our choice of w. This class has a special name.

Definition 3.13 (Canonical Divisor). The canonical divisor K¢ of a smooth curve
C'is the class of div(w) in Pic(C).

One may recognize this from the statement of Riemann-Roch. In that spirit, one
can now actually define the genus of a curve:

Definition 3.14 (Genus of Curve). Let C' be a smooth projective curve over K. The
genus of C is g = ((K¢) = dim L(K¢).

We can interpret the genus g as the dimension (over K) of the space of holomorphic
differential forms. Here, we mean w is holomorphic if ordp(w) > 0 for all P € C(K).
Indeed, if f € L(K¢), then div(f) > —div(w), or div(fw) > 0, meaning fw is holo-
morphic.

Example 3.15 (Projective Line). Let C' = P! with homogeneous coordinates [X : Y].
Consider the affine coordinate t = X/Y over C' — oo (with co = [1 : 0] per usual). We
will compute div(dt).

For P € A'(K), we have that ¢ — P is a uniformizer at P, meaning ordp(t — P) = 1.
Note dt = d(t — P), so ordp(dt) = ordp(t — P) —1 = 0. For P = oo, we consider
the uniformizer u = 1/t. We have du = —1/t?dt, so dt = —t*>du = —1/u? du, and so
ord (dt) = —2. Taking all of this together, we get

div(dt) = =2 - [e0].

So note that divisors of differential forms need not be degree 0.

Now we show the genus of P! is 0 as expected. Let w € Q¢ be non-zero. We can write
w = fdt, and so div(w) = div(f) + div(dt). But degdiv(f) = 0 and div(dt) = —2[x0]
from above, so div(w) 2 0. In other words, w cannot be holomorphic, so there are no
holomorphic differential forms on P!. It follows that g(P!) = 0.

Example 3.16 (Elliptic Curve). Assume here char K # 2,3. Choose distinct values
e1,es,e3 € K, and let C' C P? be the curve given by the equation

Y27 = (X —e1Z)(X — ey 2)(X — e32).

This is a smooth curve which passes through the four points P, = [e; : 0 : 1] and
co=1[0:1:0].

Now consider the affine plane A*> C P? with coordinates r = X/Z and y = Y/Z.
Our curve C in A? is given by y*> = f(z) = (v — 1) (z — e2)(x — e3). We now proceed
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to compute div(y). Note that we only need to consider the points P; and oo, as y = 0
only at the points P; and y is a pole only at oco.

Consider when P = P,. The maximal ideal mp is generated by (z — ¢;) and y.
Clearly, y € mp, but

mp = ((z — ), (z — e)y,y°) C (z—€)

since y? = f(z) € (r — ;). Asy ¢ (z — ¢;), we conclude ordp,(y) = 1. In order to
ensure deg div(y) = 0, we also conclude ord..(y) = —3. Collecting gives

div(y) = [P] + [P2] + [P5] — 3[o0].
In a similar fashion, we can also show
div(z — ¢;) = 2[P}] — 2[o0].

Now we can calculate div(dz). If P = [xg : yo : 1] with zy # e;, then x — z is a
uniformizer at P. We see now that from dx = d(x — zy), we get ordp(dx) = 0. At P =
P;, we no longer have = — e; as a uniformizer at P;. Instead, we know ordp (x —e;) = 2
from above. Letting ¢ be a uniformizer at P;, we get x — e; = ¢ - t? for some constant c,
and so dx = d(z — e;) = 2c¢t dt. We thus conclude ordp,(dz) = 1.

Finally, we consider P = oco. Let ¢t be a uniformizer at co. As ord(z) = —2, we
can do two change of variables (z — 1/x +— 1/t?) to conclude

orde (dz) = ord,—o (—2%d(1/x)) = ord;—o(—2t> d(1/t)) = 3,

and so
div(dz) = [P] + [P] + [Ps] — 3[o0].

But this is exactly div(y)! Thus, we conclude div(dz) = 0 in Pic(C), so g(C) =
dimL(K¢) = dim£(0) = dimg K = 1. We also have ordp(dz/y) = 0 for any
P € C(K), so dz/y is a holomorphic differential. In fact, since ¢ = 1, it is the only
holomorphic differential up to scalar. This now justifies why we consider the integral
of dy—x when constructing an elliptic curve from a lattice A C C in the uniformization of
complex elliptic curves. (See §1.4.)

Now we can make sense of all components of the Riemann-Roch Theorem, which
we know restate.

Theorem 3.17 (Riemann-Roch). Carrying over all notation from above, we have

D) —U(Keg—D)=degD — g+ 1.

Some immediate observations we can make. First, if D = K¢, then ¢(K¢) = £(0) =
deg Ko — g + 1. But {(K¢) = g by definition and ¢(0) = 1, so deg K¢ = 2g — 2. If
deg D > 2g—2, then {(Kc—D) = 0 since deg(Kc—D) < 0, and so /(D) = deg D—g+1.
Finally, if g = 1, then we can use Riemann-Roch to show that C' must be of the form
given in Example 3.16, so K¢ = 0. Thus, we have ((D) — {(—D) = deg D.
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Remark 3.18. Proving this is hard, of course. Whereas in the case of Riemann sur-
faces, one may hope to construct functions explicitly satisfying certain order conditions,
there is little hope to do this over an arbitrary field. The interpretation Serre came up
with is to see (D) as the dimension of some zeroth sheaf cohomology and ¢(Ks — D)
as dimension of the first cohomology, and this is how Grothendieck was able to prove
Riemann-Roch in the general setting.

4 11/19 - Elliptic Curves (at last)

4.1 Elliptic Curves

We can finally talk about elliptic curves in generality, not just over C. Let K be a
perfect field with algebraic closure K.

Definition 4.1 (Elliptic Curve). An elliptic curve over K is a smooth projective
curve E of genus 1 with a specified K-rational point O € E(K).

Example 4.2 (Legendre Form). Let A € K —{0,1}. Then, the curve Ey C P2 defined
by Y2Z = X(X — Z)(X — \Z) with O =[0:1:0] is an elliptic curve.

We have some non-examples as well:

Example 4.3 (Curve with Singularity). The curve given by the affine equation y? = 23

has a singularity at P = (0,0). Indeed, one can compute that the dimension of the
tangent space at P, i.e., dimmp/m%, is 2, with basis {z,y}.

Example 4.4 (Quartic). Let f € K|z| be a degree-4 polynomial without a double root.
The affine curve given by y> = f(z) is smooth, but the projective curve Y272 = f(X, 7)
is singular at co. (Take partial derivatives and evaluate at [0 : 1 : 0].) Thus, for instance,
the curve over Q given by 42 = —2* — 1 is not an elliptic curve.

We can consider the normalization of such a curve, but it no longer embeds into
P2, Instead, we can consider the curve C' C P3, with coordinates [z : y : 2 : t], defined
by y? = f(x) and z = x?. This curve has genus 1, but it does not necessarily have
K-rational points.

Proposition 4.5 (Abel-Jacobi Map). Let (E,O) be an elliptic curve. The Abel-
Jacobi map

AJ: E(K) — Pic®(E)
P+ class of [P] — [O]

is a bijection, equivariant under the Gal(K /K )-action.
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Proof. Since O € E(K), we have o(O) = O for all 0 € Gal(K/K). Thus, we have
AJ(a(P)) = [[o(P)] = [O]] = [[o(P)] = [0(O)]] = o - [[P] = [O]] = o - AJ(P),

showing Gal(K /K )-equivariance.

For injectivity, suppose AJ(P) = AJ(Q) for P,Q € E(K). Equahty in Pic’(E)
means there exists some f € K(F) such that div(f) = [P] — [Q]. As [P] —[Q] > —[Q],
we have f € £([Q]). But by Riemann-Roch, we cam compute

([Q]) — ((Kp — [Q]) = deg[Q] — g + 1.

We have ((Kg — [Q]) = 0 since deg(Kg — [Q]) = —1, and we know deg[Q] — g =
1 —1=0. Thus, £([Q]) = 1, meaning £([Q]) = K, so f is constant. This forces
[P] — [Q] = div(f) =0, hence P = Q.

For surjectivity, let D € Div’(E). By Riemann-Roch, we have

UD+[0)) =D+ [0]) —l(Kg—D—1[0]) =deg(D+1[0])) —g+1=1,
so (D + [O]) = 1. Choose any nonzero f € L(D + [O]); by definition, it must satisfy

div(f) + D+ [O] > 0.

The left side is an effective divisor of degree 1, aka of the form [P], and so we get
div(f) + D = [P] — [O] for some P € E(K). This means D = [P] — [O] in Pic’(E), as
desired. O

This Abel-Jacobi map is remarkable because it now allows us to put an abelian
group structure on E(K) that has a natural Gal(K/K)-action. In general, we can
define an Abel-Jacobi map to a family of varieties called abelian varieties, of which
elliptic curves are the ones with dimension 1. More explicitly, we can define a group
law on E(K) where given P,Q € E(K), the point P+ @ is the unique point such that

[P+ Q] ~ [P +[Q] = [O].
Theorem 4.6. Let (E,O) be an elliptic curve over K.

1. There exist z,y € K(FE) which induces an isomorphism between E and the
smooth projective curve given by the (Weierstrass) equation

Y2Z 4+ a1 XYZ 4+ asYZ? = X3+ au X2 Z + ay X 7% + ag 23,

where v = X/Z, y = Y/Z, and a; € K. This isomorphism sends O to
[0:1:0].

2. Two such equations define isomorphic elliptic curves if and only if there exists
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a change of variables of the form

*=ulx +r

y =udy+ulsx +t

with u,r, s,t € K and u # 0.

Proof of (1). The first statement begins with a slick application of Riemann-Roch. We
can use Riemann-Roch on D = n[O] for n > 1 to compute {(n[O]) = n. For small
values of n, we can explicitly find a basis for £(n[O]):

L(O) =),  LEO]) = (L),  LEO])=(1,2y).

We thus conclude ordp(z) = —2 and ordp(y) = —3. But now when considering
L(6[0]), which has dimension 6, we can produce 7 distinct elements: 1, z,y, 2, vy, y?, 3.

Thus, they must be linearly dependent, so there exist Ay, ..., Ay € K such that
0 = Al —|— AQiL’ —|— Agy —|— A4£L’2 + A5l'y —|— A6y2 —|— A7£L‘3.

Consider the order of the pole at 0, we get that ordp(2?) = ordp(y?) = —6. These
must cancel, so we require Ag = —A; # 0. (If both were 0, then we would require
A; = 0 else 0 has a pole at 0 of order i, which is nonsense.) Replacing = with —AgA2z
and y with AgAZ2y, we can divide by A3 A2 to get the desired form, albeit still in affine
form (dehomogenized).

But we can extend the map ¢ : E — {0} — P? sending P > [z(P) : y(P) : 1] to a
morphism of algebraic varieties ¢ : £ — C' C P? which sends 0 to [0 : 1 : 0]. Here, C
is the curve defined by the homogenized form of the equation as given in the theorem
statement. It remains to show that ¢ is an isomorphism, and that the curve given by
the Weierstrass equation is smooth.

Let ¢ : C — C’ be a non-constant morphism. Recall we define the degree of ¢
as the degree of the field extension [K(C) : ¢*K(C")], and that ¢ is an isomorphism
iff deg = 1. (Here, ¢* : K(C") — K(C) denotes the pullback, which is injective
since ¢ must be surjective. It is always true that this field extension is finite, hence
we can make sense of the degree.) Also recall that the degree can also be determined
by the ramification indices: if the ramification index of ¢ at P is defined as e, (P) =

ordp(p*ty(py), where t,(py is a uniformizer at ¢(P), then

degy = Z e, (P).
o(P)=Q
(Note that we always have e,(P) > 1 by (¢*typ))(P) = 0.)
if

We can now show that deg ¢ = 1 if and only if K(F) = ( Y
d

l o K( Note by default
that K(z,y) C K(E). First, we can show [K(E) : K(z)] =

)-
K(E): K(y)] =

Hahn Lheem Page 27



Elliptic Curves 11/25 - Group Law on Elliptic Curve

For the former, we just need to compute the degree of the morphism = : E — P!. This
is just
degx =e,(0) = —ordp(z) = 2.

—ordp(y) = 3. By multiplicativity of field extension

Likewise, deg(y : =
(x,y)] | 2,3, which forces [K(F) : K(z,y)] = 1. Hence, ¢ is

£ P)
degrees, we have [K(E) : K
an isomorphism.

The one final check to show is that our projective curve is indeed smooth. Denote
our equation as FI(X,Y, Z) = 0. We see that our curve C' is smooth at [0 : 1 : 0] because

g—g(O) # 0. Note now that if C' is singular, then there must exist a singularity in some

affine chart. Translating appropriately, we may suppose it has a singularity at (0,0).
The Jacobian criterion then forces the affine equation to look like

C:y? 4+ arzy — agx® — 23 = 0.

Now consider the map C' — P! sending (z,y) > [z : y]. We can show that it admits
an inverse, and hence is of degree 1. We claim that the map

P! — C
[1:t] = (2 4+ ayt — ag, t* + a1t* — ast)

is the inverse, where ¢ = y/x. 1 will omit the computation, but just plug in ¢t = y/x
into the above expression and you should recover (z,y).

The punchline is that degy = 1 implies F ~ P!, which is absurd since g(E) = 1
but g(P!) = 0. Hence, C' has no singularities, so F is smooth. O]

Proof of (2). Note that for two Weierstrass equations, one given by variables {x,y}
and the other by {2/,4'}, we have {1,z} and {1,2'} are both bases of £(2[O]), and
that {1,z,y} and {1,2’,y'} are both bases of £(3[O]). Thus, there exist \, u,r, s,t € K
(with A, u # 0) such that

=Xx+r
Y =y + sx +t.

For the coefficients to be the same, we can compute that \*> = p2. Now, taking
u =\, we get A\ =u? and u = u?, as desired. O]

5 11/25 - Group Law on Elliptic Curve

We now interpret the group law on E(K) geometrically.
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Proposition 5.1. Let (E,O) be an elliptic curve and P, @, R € E. The following
conditions are equivalent:

. P+Q+R=0.
2. There exists a line L C P? such that [E N L] = [P] + [Q] + [R].

Denoting L, as the equation of L at p (which usually just means take the affine equation
for L on an affine containing p), the term [E N L] is the intersection divisor, defined
as

[ENL] = Z dimg (Op.p/Ly)[p]

peENL

Proof. We first show (1) implies (2). Note that under the map E — Pic’(E) taking
P — [[P] — [O]] (I will also denote it as [P] — [O]), the assumption from (1) gives us

[P] = [O] + Q] = [O] + [R] — [O] ~ 0.
Thus, there exists some f € K(FE)* such that
div(f) = [P] + @] + [R] = 3[O].

In particular, as f € L£(3[0]), there exists coefficients a,b, ¢ € K such that f = az +
by + ¢, since {1, x,y} forms a basis of L(3[0]). Therefore, we may take the line with
equation L : aX 4 bY + ¢Z = 0 and now show (2) holds. Let s € EN L.

First, suppose s # O, and WLOG take s € P2—{Z = 0}. Dehomogenizing x = X/Z,
y = Y/Z, we obtain the affine equation for £ — {O} as g(z,y) = y? + a1y + azy —
(23 +agr* + ayx +ag) = 0, and for L —{Z =0} as f = ax+ by +c = 0. Now, note that

dimK K[x,y]s/(f,g(x,y)) - Ords(f)’

and so on E — {O}, we have

[EN Loy = Y ord(f)[s].

seE—{O}

Now suppose s = O. Now dehomogenize via u = X/Y and v = Z/Y to get affine
equations

E\{Y =0} 1 v+ ayuv + azv® — u® — apu®v — aguv® — agv® = 0
L:au+b+cv=0.

Now we consider
Klu,v]/(au+ b+ cv,v+ aquv + - - -).
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We will now determine the valuation of au + b + cv at the point s = O. Taking
au+b—+ cv :a%§+b+c€, we have

bt ew=aiZ bt el
au C’U—GZY CY
X &
=a—+b+—
Yy Y
=y 'f

Thus, the part of [E N L] supported on O is given by ordo(y~1f) = ordo(f) + 3[O].
Enumerating in total, we now get

[ENL] = Zords(f)[s] + 3[0]

= div(f) + 3[0]
= [P] + [Q] + [R],

as desired.

We now prove (2) implies (1). Let L : aX+bY +cZ = 0 be aline. Let f := ax+by+c.
In a similar manner to above, we can show

[E N L) =div(f)+ 3[0],
and so
div(f) = [P] + [Q] + [R] — 3[0] = ([P] = [0]) + ([Q] — [O]) + ([R] — [O]).

Taking the inverse of the Abel-Jacobi map and noting that div(f) = 0 in Pic’(E), we
get P4+ @ + R = O as desired. O

We hope that we can equip E with an algebraic group structure, since it seems to
admit both an algebraic variety structure and a group law. We need to check that
multiplication and the inverse map are both K-variety morphisms.

Theorem 5.2. The group law F x E — FE is a morphism of K-varieties.

We must prove a few lemmata beforehand.

Lemma 5.3. Let P = (zg,y0) € E —{O}. Then, —P = (x0,y;) and yo,y, are roots of
a polynomial of the form y* + (ayzo + az)y + C = 0 for some constant C.

Proof. Let L : aX +bY + c¢Z = 0 be the line in P? that passes through the points O
and P. As L passes through O =[0:1: 0], we have b = 0. As L passes through P, we
get axg + ¢ = 0. We can thus write L as

L:X —x¢Z=0.
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Additionally, we know — P is a point on L by the above proposition, so by the above
equation for L, the z-coordinate for —P must be xy. Thus, we have —P = (¢, y;) for
some y, € K. The fact that both P = (x0,y0) and —P = (zo,y) satisfy the affine
Weierstrass equation gives us the polynomial condition, where the constant term is
C = —(x3 + agz? + asxo + ag). O

We now show that the inverse map is an automorphism of K-varieties, as we sought.
Additionally, translation is an automorphism as well.

Lemma 5.4. Let (F,O) be an elliptic curve over K.

1. The inverse map E — E sending R — —R is an involution (automorphism)
defined over K.

2. For all Q € E(K), the translation map tg : E — E sending R — R+ Q is an
automorphism of varieties defined over K.

Proof. Let P, € E. We consider the divisor [P]+[Q)], which has degree 2 > 2¢g—1 = 1.
Thus, Riemann-Roch tells us that £([P]+ [Q]) has dimension 2 over K, meaning there
must exist some nonconstant f € L£([P]+[Q]). Even more, it must have a pole at both
P and @ — if it only had one pole, then it must be constant via ¢([P]) = ¢([Q]) = 1.

Now consider the map ¢; : E — P} given by f. Since P and @ are the only poles,
and they are simple, we have

pr(loc]) = [P]+ Q] = degypy =2 = [K(E): K(f)].

We assert that ¢y must be separable. If it were inseparable, then we must have
K(E) = K(f?), which would imply £ ~ P'. But this is impossible because they have
different genus.

But now we have s is a degree-2 separable map, so it must be Galois. Thus,
any 0 € Gal(K(E)/K(f)) uniquely corresponds to some automorphism opg : £ — E
which preserves ¢y, i.e., it satisfies proopg = ¢r. As ¢y is Galois, op acts transitively
on each fiber of ¢, meaning in particular that opg(P) = Q.

Suppose R € E'\ {P,Q}. Considering the function f — f(R) € K(f), we have that

div(f = f(R)) = [R] + [0(R)] — [P] - [Q],

so [R] + [0(R)] ~ [P] + [Q] in Pic(E). Now we are ready to prove the lemma.

For (1), we take P = @ = O, and so for any R # O, we have [R]+ [00.0(R)] ~ 2[0].
By our above proposition/Abel-Jacobi, we conclude op o(R) = —R. Since 0o is a
morphism of K-varieties, this proves (1).

For (2), we take P = O and () # O. Then, we get 0o g(R) =Q — R = —t_g(R), so

00, °000(R) =00q(—R) =—t_g(—R) =tq(R),

so tg = 00,0 © 00,0 is @ morphism of K-varieties. L
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Now we will prove Theorem 5.2.

Proof of Theorem 5.2. First, suppose P,QQ € E — {O} and that P # £0Q. The latter
assumption ensures that the line passing through P and @ (a) is well-defined (since
P # @) and (b) does not pass through O (as otherwise P = —(@) by Proposition 5.1).
Denote this line Lpg, and give it an equation Lpg : aX + bY + c¢Z = 0. Also write
P =[z(P) : y(P) : 1] and likewise for (). We thus have

ax(P) + by(P) + ¢ = az(Q) + by(Q) + ¢ = 0.

We may choose values a = y(P)—y(Q), b = 2(P)—xz(Q), and ¢ = z(Q)y(P)—z(P)y(Q).
Note that as O =[0:1: 0] ¢ Lpg, we necessarily have b # 0.
Let [zo : yo : 1] be a point of intersection between E and Lpg. Substituting

Yo = —3To — 7 into the affine Weierstrass equation for £, we obtain

a?

0= 133 + (CLQ — b_2 + %al) xg -+ O(LU(])

Note that the only points in £ N Lpg are P, @), and —(P + @), and so the roots of
the above cubic are z(P), x(Q), and z(—(P+ Q)) = (P + Q) (by Lemma 5.3). Using

our chosen values for a and b, we now have
y(P) =@\, (9(P)—y(Q)
wGU—MQD +1(ﬂP%~d@

which gives us the addition law for the z-coordinate. Using now yy = —%xg — £, we
also have the addition law for the y-coordinate:

"P Q)= —art ) - a(P) - 2(@)

YP+Q)=—ax(P+Q)—as—y(—(P+Q)) Lemma 5.3
=—ax(P+Q)—az+ —Eg (( ; (P+Q)+ x(Q)zgi) : Zég;y@)
(., y(P) —y(Q) 4 z(Q)y(P) — x(P)y(Q)
(]* o(P) <Q(P D+ <3+ o(P) —(Q) )

Now we pass to the general setting. Note that we have been working in the Zariski-open
U=A{(P,Q) € (E-{0})| P #+Q} C BE(K).

In general, we have P+ Q = t_gr(tg(P) + Q). Then, + =t_go+o(tg xid) defines
the group law on Vg = (tg x id)~!(U). This now allows us to define the group law on
all of F, as {VRg} is an open cover of E. O

Example 5.5. Let £/Q be given by the equation y* = 23 + 17. By trying out small
values, we can find some integral points

P1:(—2,3), P2:<—1,4), P3:(2,5), P4:(4,9), P5:(8,23),
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One can compute explicitly Ps = —2P;, P, = P, — P53, etc. We can also compute sums
such as s 100
PB+P=———].
21+ I3 ( 9 97 )

In fact, it turns out that P, and P generate all of F(Q), and so E(Q) = ZP, ® ZP;5 ~
L X 1.

6 11/26 - Morphisms of Elliptic Curves

We will primarily study E(K), its finite subgroups, and End(E). Most notable of the
finite subgroups are the subgroups of n-torsion points, denoted E(K)[n]. Over C, we
have E(C) = C/A, and so E(C)[n] = 2A/A ~ (Z/nZ)?. We hope to replicate results
just as nice for arbitrary K.

6.1 Morphism as Group Morphism

We naturally want to study morphisms between elliptic curves. Such a morphism
should respect both the variety structure of £ as well as the group structure of E(K).
Fortunately, the latter comes for free.

Lemma 6.1. Let (E,0) and (E',0’) be elliptic curves over K. Let ¢ : E — E' be a
morphism of K-varieties with ¢(O) = O'. Then, p is also a group morphism.

Proof. Note that ¢ induces a morphism on the divisor groups
¢« : Div(E") — Div(E)
(Pl Y el@IQl.

QeP=1(P)

One can see from the definition that deg(yp.D) = deg(y)deg D. In particular, ¢,
induces a map Div?(E) — Div?(E').

If f € K(E)X, then ¢.(div f) = div(p.f). Thus, ¢, sends Prin(E) — Prin(E"),
meaning it induces a morphism Pic(F) — Pic(E’). For P € E(K), we have p.([P] —
[0]) = [p«(P)]—[p«(O)]. The latter term is just [O'], and so ¢, is a group morphism. [

6.2 Isogeny

Because the group morphism structure comes for free so long as O +— O’ (Lemma 6.1),
we can take the following as our definition of morphisms:

Definition 6.2 (Morphism, Isogeny). A morphism of elliptic curves is a morphism
of K-varieties ¢ : E — E’ with ¢(O) = O’. A nonconstant morphism between elliptic
curves is called an isogeny.
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Note that the set of morphisms Hom(F, E’) form an abelian group via (p+v)(P) :=
©(P) + ¢ (P), where addition on the right is taken in E'(K). Even better, the set of
endomorphisms End(F£) forms an endomorphism ring, where the multiplication rule
is composition.

Proposition 6.3 (Finite subgroups as kernels). The kernel of an isogeny is a finite
subgroup of E(K), and any finite subgroup is the kernel of some isogeny.

Proof. Let ¢ be an isogeny. The fact that ker ¢ is a subgroup comes from Lemma 6.1
since then ¢ is a group homomorphism. It is finite because ker p = ¢=1(O’) and fibers
of nonconstant maps are finite. (It is a closed proper subset of E under the Zariski
topology.)

Now suppose H C E(K) is a finite subgroup. Consider the translation map t, :
E — F mapping P — P + h for all h € H. Reformulating in terms of function fields,
ty, corresponds to some o, € Aut(K(F)), and we can identify H with the subgroup
{on | h € H} C Aut(K(F)), which we also call H.

Let K(E)? be the subfield of K(FE) fixed by H. By the Fundamental Theorem of
Galois Theory, this is a Galois extension with Galois group H. But the equivalence
between function fields and smooth projective curves guarantees such a curve C' with
K(C) = K(E)", and the extension K(E)# C K(F) corresponds to a morphism ¢ :
E—C.

We now claim that this is an isogeny, with ker ¢ = H. We must show, in particular,
that C' is an elliptic curve, i.e., it has genus 1.

As ¢ is Galois, we have |H| = deg(p) = ep(¢)-|¢~1(P)| for all P € C. Furthermore,
we claim that ¢ is constant on the H-orbits in E. Suppose we had some h € H such
that @(h 4+ P) # ¢(P). Then, we could find some f € K(C) with a pole at P but
not at h + P. This would contradict the invariance of K(C') under action by H, so
we conclude ¢ is constant on its fibers. In particular, this means that |p~'(P)| > |H|
since the size of any H-orbit is H. The above equality forces |¢~'(P)| = |H|, meaning
ep(p) = 1 and hence ¢ is unramified everywhere. Riemann-Hurwitz then tells us

0=2g(E) —2=deg(p)(29(C) —2) = [H] - (29(C) — 2).

This forces 2¢(C') —2 = 0, so g(C') = 1 as desired. Taking O" = p(O) makes (C,0’)
into an elliptic curve and ¢ : E — C into an isogeny. But now we can see H = ¢~ (0’)
where h — h + O, so indeed H = ker ¢ as sought. O

Example 6.4 (Multiplication-by-m). We can take the subgroup of m-torsion points in
E, denoted E[m|. What isogeny has kernel E[m]? Consider the multiplication-by-m
map

m]: E — E.

This is special because it is an endomorphism. The aside in §1.6 tells us that, when
K C C, these are usually the only endomorphisms of E, and that elliptic curves which
admit endomorphisms beyond just Z have very special properties.
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Claim 6.5. Suppose char K # 2 and |F(K)| > 4. The multiplication-by-m map
[m] : E — E is not trivial, and hence non-constant.

Proof. 1t suffices to show this for prime m. When m is odd, it suffices to show there

exists a point in E(K) of order 2, as if P has order 2, then [m|]P = [2k + 1|P =
[k][2]P + P = P # O. We employ an argument similar to that in the proof of Lemma
54. Let P = Q = O, take * € £(2[0]) — K, and consider ¢, : E — P}. This is
separable whose fibers are of the form {P,—P}. (If P = (x,y) is in the fiber, then so
is (z,—y) = —P.) Since deg ¢, = 2, we have the ramification degree at any point is at
most 2. Invoking Riemann-Hurwitz again, we have

0=29(E) —2 = (29(Pk) —2) -2+ 3 (e, (P) — 1)

PeFE

=—4+ Z(%(P) —1),

PeE

hence there are exactly 4 points which are ramified (where e = 2). Equivalently, there
are 4 points such that P = — P, so this guarantees a 2-torsion points.

Furthermore, all points except 4 are not 2-torsion. Assuming |E(K)| > 4, this means
we have a point which is not 2-torsion, hence [2] is also nontrivial. This exhausts all
cases. [

Example 6.6 (Isogenies over F,). If E is an elliptic curve over F,, then observe that

E(F,) is itself finite!] We can consider it as a finite subgroup of E(F,). Note that we
can obtain E(F,) by looking at the fixed points of the Frobenius Frob,, and so

id = Frob, : K = E

is an isogeny. In particular, this means that whereas most elliptic curves over K C C
do not have complex multiplication, all elliptic curves over finite fields have complex
multiplication because of the Frobenius map.

Let ¢ : E — E’ be an isogeny. We'd like to determine more information about
ker ¢, as these give the finite subgroups. We will obtain | ker ¢|.

Lemma 6.7. Let ¢ : E — E’ be an isogeny, and take points P € E and Q = ¢(P).
Then, e,(P) = deg;(y), where deg;(¢) denotes the degree of the inseparable part of .

Proof. We first prove this when ¢ is separable, i.e., when deg;(¢) = 1. Riemann-
Hurwitz tells us

29(E) —2=degp- (29(E') —2) + > _(e,(P) = 1).

PeE

Since g(E) = g(E') = 1, we get the sum on the right is 0. Hence, e,(P) =1 =
deg,(p) for all P € E, and the statement is proven.
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Now consider the general case. Recall that if K’ C F' is a finite field extension, then
there exists an intermediate extension X C L C F such that L/K is separable and F'/L
is purely inseparable. If char K = 0, then F'/K is purely separable. If char K = p and
K is perfect, then there exists some h such that F' P = L. Thus, ¢ can be decomposed
as ¢ = 1 o p,, where 1 is separable, ¢ = p", and ¢, is the ¢-Frobenius morphism. This
is ramified with ramification index ¢, but deg; ¢ = deg; ¢, = ¢, so equality holds. [

Now we can see deg ¢ in two different ways. First, we can break ¢ down into its
separable and purely inseparable part, so deg(¢) = deg; () deg,(¢). On the other hand,
we have deg(p) = e(Q|O")|p~H(O")| = deg;(¢) - |1 (O")], and so we conclude:

Proposition 6.8. Let ¢ : E — E’ be an isogeny. We have
# ker p = deg, ¢.

We know that the following are separable isogenies, although we will prove them
later.

Theorem 6.9. The isogeny [m] is separable iff (m,char K) = 1. Additionally,
id — Frob,, is always separable.

Author’s Note 6.10. We provided a proof of each statement in different, later lectures.
I am going ahead and proving the second statement here in more detail (the proof we
did in class assumed the following lemma). The first statement is proved in the proof
of Corollary 7.8.

To prove that these are separable, we will use the following separability criterion for
maps between curves.

Lemma 6.11. Let ¢ : C; — Cy be a nonconstant map of curves. Then, ¢ is separable
if and only if the map ¢* : Qc, — Q¢, is injective.

Proof. We have to backfill on some things about differentials here. Proposition 3.9
tells us that each space of differentials is one-dimensional, so ¢* being injective is
equivalent to being nonzero. Choose some y € K (C3) such that dy generates Q¢,.
We can show that this is equivalent to the finite extension K (C)/K (y) being separable.
Indeed, Example 3.5 tells us K (C)/K(y) is separable iff Qx(c) k@) = 0- Then, taking

C/B/A=K(C)/K(y)/K, the exact sequence
C®pQpa— Qcia— Qcyp — 0

tells us that K(C) %) ) — Ur(e)/x 19 surjective. But the former has dimension
1 over K(C) with basis dy, so its image dy € Q% (cy/x must be nonzero.

To summarize, since dy is a basis of {2¢,, we necessarily have f_(C’g) /K (y) is finite
separable from the above, so ¢* K (Cs) is separable over ¢*K (y) = K(¢*y).
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Now we execute our proof. By definition, ¢ is separable iff K(C1)/¢*K(Cy) is sep-
arable. But this is separable iff K(C1)/K(¢*y) is separable, which in turn is separable
iff d(¢*y) is a basis for Qg , i.e., d(¢*y) # 0. This means ¢* is nonzero, as desired. [J

Proof of Theorem 6.9. As mentioned before, we leave the proof of the first statement in
the proof of Corollary 7.8. (The reason why we can’t do it presently is because the map
[m]* is very difficult to describe explicitly — the explicit formula for m = 2 (duplication
of a point) was messy enough!)

For the Frobenius, note Frob)(dr) = d(z?) = p - #P~*d(z) = 0. Thus, for any
0 # w € Qg, we have

(id — Frob,)*w = w — Frob, w = w # 0,

so id — Frob, is separable by the lemma. O

6.3 Aside: Discriminant and j-invariant

Consider the Weierstrass equation (A, B € K)
Wag =W(z,y) :y* = 2>+ Az + B.

Suppose char(K) # 2,3, in which case all elliptic curves can be written in this
form. Furthermore, we showed that the only change of variables which preserve the
Weierstrass equation are (z,y) — (u?z,u®y) for u € K*.

Definition 6.12 (Discriminant, j-invariant). Define the discriminant of Wyp as
A = —16(4A% + 27B?).

The j-invariant of Wyup is given as

3

= 17284A
= N

Remark 6.13. Under the change of variables (x,y) — (u
change of values:

2z, udy), we have the following

A =u'A, B =u°B, A =u?A, j =]

Consequently, the j-invariant does not depend on the specific Weierstrass equation,
hence the name.

Proposition 6.14. The discriminant and j-invariant have the following properties:

1. The Weierstrass equation Wp is not singular if and only if A # 0.

2. If K is algebraically closed, then two elliptic curves with the same j-invariant
are isomorphic.
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3. Given j, € K, there exists an elliptic curve defined over K (j,) with j-invariant
Jo-

Proof of (1). Consider the associated homogeneous equation in P%:
f(X,Y,2)=Y?Z — (X + AXZ*+ BZ* = 0.

We can show explicitly that O = [0 : 1 : 0] is never singular: in particular, 0f/0Z at O
is always 1.

Let P = (zo,y0) € E — {O} be a singular point. Then, we require the partial
derivatives in both = and y to vanish at P, which comes out to A = —3z2 and y, = 0.
Plugging into the affine Weierstrass equation, we get

0=ys =5+ Avg + B = ) — 323 + B,
so B = 2x3. Calculating A given the explicit formula, we have
A = —16(4A% + 27B%) = —16(—4(322)% + 27(223)*) = 0.

This demonstrates that F is non-singular if A # 0.

Conversely, the above computation shows that the singular points of E, if there are
any, must be of the form (¢, 0), and 2y must be a double root of P(x) = z* + Az + B.
But this happens if and only if A = disc(P) = 0, so we conclude (1). O

The rest were completed in a separate TD session, but I did not transcribe. The
proofs can be found under Proposition I1I.1.4 in Silverman.

7 12/2 - Special Morphisms

7.1 Frobenius Morphism

In the last lecture, we noted that the Frobenius morphism for elliptic curves over I,
always gives rise to an endormorphism not in Z, meaning that all elliptic curves over
finite fields have “complex multiplication” (End(E) # Z). We will now study this
morphism in a more general setting, namely for any (perfect) field of characteristic
p > 0.

As setup, let p be a prime number, K a perfect field of characteristic p, ¢ = p”
some prime power of p, f € K[Xy,...,X,] written as f = > a; X’ for a; € K, and
f@O =3 alx!

Let C be a projective curve over K. Consider the homogeneous ideal I(C) of C,
which is just

I(C) = {f € K[Xo,...,X,] | f homogeneous, f(P) = 0 for all P € C}.
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Definition 7.1. C'@ is the projective curve with homogeneous ideal I(C@) = {f(@ |
felI(C)}.

This is a projective curve over K. We can now construct the Frobenius morphism

0, C — CW
[(Xo - Xy = [XE -0 X
One can check this is well-defined by construction. Indeed, let P = [Xg:---: X,] €

C and f € I(C) (so f@ € I(C@) by definition). Then, we have

f(q)(gpq(P)) = f(‘I)<Xg’ S 7Xg> = (f(X(b ce 7Xn))q =0
and so @, (P) € C9.

Proposition 7.2. Let ¢, be the Frobenius morphism defined above. It satisfies
the following properties:

1. ;K (CW) = K(C)"={f| f € K(O)}.
2. g is purely inseparable.

3. degp, =q.

Proof. For (1), we know that K(C) is the set of all f/g, where f,g € K[Xy,...,X,]
are homogeneous of the same degree and g ¢ I(C), modulo the standard equivalence
flg~flg < fg — fg€I(C). Thus, every element in ¢} K(C?) is of the form
FOXE ..., X0/ g D(Xd, ..., X9). But char K = p and K is perfect, so both the nu-
merator and denominator can be written in the form fo(Xo, ..., X,)?/g0(Xo, ..., X,)?
for some fy,go € K(C). This proves (1).

For (2), we really just need to invoke the following fact, which we have used before:
every finite extension L/K can be split into a separable and purely inseparable part
L/K®*? /K. Furthermore, [L : K*P] = p™ for some n, so for any a € L, there exists
n > 1 such that o’ € K*P. Here, we have @, is purely inseparable iff K(C)/¢;K(C (@))
is purely inseparable. We just showed ¢, K(C@) = K(C)4, so for any f € K(C), we
have f? € p; K(C (@)). Hence the extension is purely inseparable.

For (3), let P € C be a smooth point. Let ¢ be a uniformizer at P. We have the
following field extensions:
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Note again that the bottom right is K(C)? = ¢;K(C) by (1). We know the big
extension on the right is purely inseparable by (2). We also know the left extension
K(C)/K(t) is separable; this is shown in the proof of Lemma 6.11. (The proof outline:
K(C)/K(t) separable iff Q) k@ = 0 iff dt # 0, which is evident as it generates
Qc. A more elementary proof that doesn’t use differentials is in Silverman, Proposition
I1.1.4.) As a consequence, the extension K (C)/K(C)4(t) is an intermediate extension of
both a separable and purely inseparable one. This is only possible if K(C) = K(C)4(t).

Now we have degp, = [K(C) : p; K(C)] = [K(C)i(t) : K(C)7; it suffices to show
that this degree extension is exactly g. Note first that degey, | ¢ since t7 € K(C)1.
Since ¢ is just some power of p, it suffices to show that t#/? ¢ K (C)?. If we assume the
contrary, then %7 = f4 for some f € K(C). But then

q/p = ordp(f?) = q-ordp(f)

which would imply ordp(f) = 1/p. This is clearly not possible, and hence deg ¢, = ¢
as desired. O

Corollary 7.3. Let ¢ : C; — C5 be a morphism between smooth curves over a field K
with char K = p. Then, we can decompose ¥ as

w0 2 oW o,
with ¢ = deg,; ¥ and X\ 1s separable.

In other words, the “only” inseparable morphism between smooth curves is the
Frobenius morphism. Of course, we assume char K > 0, as all morphisms are separable
when char K = 0.

Proof. Just look at the corresponding function field extension. We have degy =
[K(CY) : »*K(Cy)], and we can split this into K(C)/y*K(C2)*P/¢*K(Cy). Denote
F = ¢*K(Cy)**P. We know that K(C;)/F is purely inseparable of degree deg,; 1 = q.
This means K (C1)? C F. But we also have [K(C) : F| = [K(C}) : K(C1)?] = g, so the
inclusion must be an equality. Thus, F' = K(C1)? = ¢; K(C1), with the second equality
coming from part (1) of the above proposition. The rest of the proof is just reformu-
lating the fact about splitting a field extension into a separable and purely inseparable
part for the morphism . O]

7.2 Dual Isogeny

Let E, E’ be elliptic curves over some perfect field K, and let ¢ : E — E’ be an isogeny.
Although isogenies clearly do not need to be isomorphisms, we have a rough notion of
an “inverse” given by the dual isogeny. This extra structure on Hom(E, E’) allows us
to prove many useful facts about isogenies, as we will see. For instance, it turns out
that the composition of an isogeny ¢ and its dual ¢ gives the multiplication-by-deg(¢)
map, so we get a nice handle of the degree with other benefits (e.g., Corollary 7.11).
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Recall the Abel-Jacobi map E(K) — Pic’(E) sending P to the class of [P] — [O].
Now looking at divisors, we have the pullback map

¢* : Pic’(E') — Pic’(E)
[Pl ) e (@]

»(Q)=P

This allows us to construct a map ¢ : F'(K) — E(K) via

5: E'(K) 2L Picd(E') &5 Picd(B) 225 B(K).
What is this map, and how exactly does it relate to ¢? We answer this now.

Let us closely track what ¢ actually does. Let Q € E'(K). Then, considering ¢ as
a map on the Picard groups, we see $(Q)) satisfies

[2(@)] = [0] = ¢*([Q] = [O])

We will simplify the right hand side. Let P € E(K) with ¢o(P) = Q. Just by
definition, we have

Q-0 = > eI~ ) e (R)R].

Tep~H(Q) Reker ¢

But note we can write o' (Q) = P+ker ¢, so any T € ¢~ (Q) is of the form P+ R
for some R € ker ¢. But then in Pic’(E), we have

[P+ R] = [R] ~ [P] + [R] = [O] — [R] ~ [P] = [O].
Recall from Lemma 6.7 that the ramification index for an isogeny is the same for

every point, namely e,(R) = e,(T) = deg; . We also have Proposition 6.8 which says
# ker ¢ = deg, . Using both, we get

Q=10 = Y eI~ ) ey(R)IR

Tep=1(Q) Reker ¢
= Y e, (P+R)[P+R]-e,(R)R
— Z deg; v - ([P + R] — [R)])

= deg, ¢ - (#ker o) - ([P] = [0])
= deg; ¢ - deg, ¢ - ([P] = [0])
= deg o - ([P] = [0]),
thus (Q) = [deg ¢]- (P). Remembering Q) = ¢(P), we are really saying poy = [deg ¢].
This is our dual isogeny, except we are missing one crucial fact: we do not yet know
this is an isogeny. Indeed, finding a P such that ¢(P) = @ involves taking roots, so

we cannot say that ¢ is a rational map. This requires us to define the dual isogeny in
a slightly different way:
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Theorem 7.4. Let ¢ : E — E’ be an isogeny of degree m. Then, there exists a
unique isogeny ¢ : £ — FE such that

poy=[mlEg.

In addition, it also satisfies ¢ o = [m]g and @ = po1b.

Definition 7.5 (Dual Isogeny). Let ¢ : E — E’ be an isogeny. The isogeny ¢ : £/ — E
satisfying the above is called the dual isogeny to .

Proof. We first prove uniqueness. If ¢’ were another isogeny with the three given
properties, then we would have

(@—@)op=0op—¢F op=[m|p—[m|lp=0.

As ¢ is an isogeny, it is non-constant, hence surjective. It follows then that ¢ — @’ = 0.

Assuming existence of ¢ satisfying the first condition, we have that ¢ o p o ¢ =
wo[m]g = [m]e oy, and so ¢ o p = [m]e. (The multiplication-by-m maps commute
with ¢ because ¢ is a group homomorphism.) This proves the second condition.

Assuming ¢ and ¥ exist (here, ¢ : E — E" and ¢ : E' — E"), we may compute

(Fod)o (o) =Foldeg]w oy
= (poy)o[deg |
= [deg () deg(¥)]p
= [deg(p o )|

—Jopo (o),

and the third condition is proven.
Now we prove existence of ¢ satisfying the first condition. Corollary 7.3 tells us

we can decompose ¢ into ¢ @ E %1, 5@ A B where ) is a separable isogeny and
q = deg; p. (If char K = 0, then there is no Frobenius morphism, and the map is
separable.) Because we showed this = dual is compatible with composition, it suffices
to prove the cases where either ¢ is (purely) separable or purely inseparable.

Suppose ¢ is separable. Then, # ker ¢ = deg, ¢ = degp = m, so ker ¢ C ker([m]g).
Looking at the function fields, we have the extension K(FE)/¢*K(E’). We have the
following useful lemma:

Lemma 7.6. If o : E — E’ is an isogeny, then we have an isomorphism of groups
ker o — Aut(K(E)/¢*K(E")).

If o is separable, then K(E)/¢*K(E') is Galois.
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Proof. If P € E(K), denote tp : E(K) — E_(f) as the translation map x — x + P.
This now gives us a map E(K) — Aut(F(K)), which upon restricting to ker ¢ and
looking at functions fields gives

ker o — Aut(K(E)/o*K(E"))
P—tp.

Note that indeed any t fixes p*K(E') for P € ker ¢ because, for f € K(E'), we

have

tpe"f = (potp) f=¢"/,
where the second equality follows from potp(z) = p(z+ P) = p(z) +¢(P) = p(z)+O.
We also check this is a group morphism, as tpyg =tpotg =tgotp.

Now we prove that this is indeed an isomorphism. Note that | ker ¢| = deg, ¢, but
| Aut(K (E)/¢*K(E))| < deg, ¢ by Galois theory. (It is less than the degree of the
separable part of K (E)/p*K(E), which is exactly deg, ¢.) It thus suffices to show that
the map is injective. Suppose t% = id on K(FE). This means that for all f € K(E),

we have f(z + P) = f(x) for all x € E(K). But this is only possible if P = O, as
desired. ]

As ¢ is separable, the field extension is Galois, so the above lemma gives us the
isomorphism

ker o ~ Gal(K(E)/¢*K(E")).

Likewise, we have ker([m]g) ~ Gal(K (E)/[m]*K(E')), and this gives us an inclusion of
Galois extensions

K(E) D ¢*K(E') D [m];K(E).
Now, the latter extension @*K(E') D [m|LK(E) produces a well-defined map

K(E) — K(E') given by (¢*)~! o [m]i,. We define ¢ : E' — E to be the morphism
whose corresponding map on function fields is (¢*)™ o [m]%. We see then that

p o PE(E) = ¢" o ((¢") " o [mp)K(E) = [m]pK(E),

and so p o ¢ = [m|g. It remains to check that ¢ is indeed an isogeny. We already see
it is nonconstant, and we check easily that

completing the proof in the separable case.

Now assume ¢ is purely inseparable. In this case, we must have ¢ = ¢, for some
prime power ¢ = p/. From construction of the Frobenius map, we have ¢, = (¢,)°’.
Again, as we've seen taking the dual is compatible with composition, we are reduced
to the case where ¢ = ¢,. Note deg ¢, = p.
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The multiplication-by-p map [p] : E — FE is an inseparable isogeny because of
Lemma 6.11 and the fact that any w € Qg satisfies [p|*w = 0 in characteristic p. We
can see this from the fact that Qg is generated by dz/y, and we can compute

[p]*@ _ dipr)  dx

Y stuff pstuff -

This means we can factorize [p| : £ — E as [p| : £ 2y @D 2 E where r > 1 and
A is separable. We now define , := Ao ¢)~!, and we can see that [p] = P, 0 @, as
desired. ]

Theorem 7.7. Let ¢,1 : E — E’ be isogenies. Then, ~ is an endomorphism on
the group of isogenies Hom(E, E’). In particular, we have

—

o+Y =0+

We will save the proof for later, once we have the Weil pairing at our disposal; see
Proof 8.2.

Corollary 7.8. Let m > 1 be an integer. Then,

—~

1. deg([m]g) = m? and [m] = [m].
2. If (m,char K) = 1, then

E(K)[m] & Z/mZ x Z/mZ.

3. If char K = p, then E(K)[p"] is either (a) {0} for alln or (a) Z/p"Z for all n.

Definition 7.9 (Supersingular). Elliptic curves over K for which E(K)[p"] = {0} for
all n (case (a) in Statement 3 above) are called supersingular elliptic curves. These
are very rare!

Proof. For (1), note the first statement follows from the second immediately from oy =

—~

[deg ¢]. We prove [m] = [m] by induction. Clearly [m] = [m] is true for m = 1. For the
inductive step, we have

— e~

[m +1] = [m] +id = [m] +id = [m] +id = [m + 1],

where the second equality follows from Theorem 7.7 and the third from the inductive
hypothesis.

For (2), we begin by supposing (m,char K) = 1. We can quickly justify [m] is a
separable isogeny. (Note this finally completes the proof of Theorem 6.9 — and in one
sentence, too!) If [m] were not separable, it would have an inseparable part given by
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some Frobenius, but the coprimality condition forces the Frobenius to be trivial. This
means that

|E(K)[m]| = |ker([m])| = deg,([m]) = deg([m]) = m?,

so E(K)[m] is a finite abelian group of order m?.

Note if m = [[,p", then we have E(K)[m| ~ [[, E(K)[p["]. (This is from the
classification of abelian groups.) Thus, it suffices to prove the case when m = ¢" for
some ¢ # p = char K, and then the general statement will follow.

First consider r = 1. Then, we have two possibilities: either Z/(*Z or Z/(Z x L/ (Z.
But the former is impossible, as there does not exist an element of order ¢? in E(K)[/].
In general, if we have

E(E)[] = (Q1) x -+ % (Qs)
where Q; € E(K) has order ¢, then

E(K)[(] = {(7'Q1) x -+ x ((=71Q,) = (ZJIL)?,
so we force s = 2. But now we have
E(K)[("] = Z/t*Z x 7.)1"Z,

and since this has order 2", we require a + b = 2r. But there cannot be an element of
order greater than ¢", so we must have a = b = r, as desired.

For (3), recall from the end of the proof of Theorem 7.4 that [p]|r = ¥, 0p,. Because
©p © Pp as well from the theorem, we get more generally [p"]p = @," o ¢p. Thus,

|E(K)[p"]| = deg,([p"]p) = deg,(@,") - deg,(¢}) = deg (©,")

since ¢, is purely inseparable. Noting deg®, = p = deg;(¥,) - deg,(¥,), we naturally
split into two cases: either @, is purely inseparable, or it is separable.

If , is purely inseparable, then ®," is as well, and so deg, p," = 1. This forces
E(K)[p"] = {O}, giving the supersingular case. Otherwise, if p, is separable, then
deg @, = deg, p, = p, so |E(K)[p"]| = p".

We prove now that it is exactly Z/p"Z. This is obvious for n = 1. Since [p| : E — E

is non-constant, it is surjective, so for any P € E(K) we may find some ) € F(K)

such that p- @Q = P. Thus, by induction we can show that F(K)[p"] always contains

an element of order p", in which case E(K)[p"| ~ Z/p"Z as desired. O

We now show that the degree gives a quadratic form. We quickly define a quadratic
form:

Definition 7.10. A function d : A — R on an abelian group A is a quadratic form
if (i) d(x) = d(—x) for all x € A and (ii) the map (z,y) — d(z + y) — d(x) — d(y) is
Z-bilinear.

Hahn Lheem Page 45



Elliptic Curves 12/2 - Special Morphisms

Corollary 7.11 (Degree as Quadratic Form). The degree map
HOHI(E, E/) — Zzo
p — deg

defines a positive definite quadratic form.

Proof. Clearly, deg(p) = deg(—¢) and deg ¢ > 0 with equality iff ¢ = 0. It remains to
only show the Z-bilinearity of (¢, 1) — deg(¢+1)—deg p—deg1). Seeing Z — End(FE)
via m +— [m], we have

[deg(ip + )] — [deg @] — [deg )] p = (¥ + @) o (p+ 1)) — Bop — Vo
=top+ oo,
which is indeed bilinear by Theorem 7.7. O]

On the note of bilinear forms, we will prove this nice result here. This will be the
crux of the main result in the next section (Theorem 7.13).

Lemma 7.12. Let d: A — 7Z be a positive definite quadratic form on an abelian group

A. Then,
|d(z —y) — d(z) — d(y)| < 2/ d(x)d(y).

Proof. Denote B as the Z-bilinear form B(z,y) = d(z —y) —d(z) —d(y) on A x A. By
positive-definiteness, we have

0 < d(mx —ny) = m*d(z) + mnB(z,y) + n’d(y)
for all m,n € Z. Letting m = —B(z,y) and n = 2d(z), we get
0 < d(z) - (4d(z)d(y) — B(x,y)),

and the result follows. O

7.3 Elliptic Curves over Finite Fields

We now restrict our attention to the case where K = F,. Let p be prime, ¢ = p/ some
prime power, and K = F,. Let £ be an elliptic curve over K. The affine equation for
E is, as always, given by

y2 + axy + azy = 2 + a2x2 + a4x + ag

where a; € K.

We are interested in counting K-points on E. Accounting for the point at infinity,
we have |F(K)| is one plus the number of solutions (z,y) € K? to the above affine
equation.
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One naive upper bound we can take is |E(K)| < 1+ 2¢. For any choice of z € K,
we would have at most 2 solutions for y.

We can try to approximate better. If we choose some z € K, then we have a
quadratic in y. There is heuristically a 1/2 probability that the quadratic will have a
solution y € K. This means that morally, |E(K)| should be on the order of magnitude
of ¢+ 1. How far off are we? Here is a great result by Hasse:

Theorem 7.13 (Hasse Bound). If |K| = g and E is an elliptic curve over K, then
[#E(K) —q—1] <2V/q.

Remark 7.14 (Sato-Tate Conjecture). Let E be an elliptic curve over Q. We can
consider the “error” term a,(F) = p+ 1 — #E(F,). From the Hasse bound, we have
that |a,(E)/2/p| < 1 when E has good reduction over p, i.e., when E(F,) is still
smooth. (See Definition 9.10.) Given this, we can assign an angle 6, € [0, 7] such that

Then, the Sato—Tate Conjecture claims that if £ does not have complex multiplica-
tion, then the angles 6, are equidistributed in [0, 7] with probability measure % sin” 0 d#.
I find this so wild!! This has been proven in specific cases (e.g., when j(E) ¢ Z) by
Clozel, Harris, Shepherd-Barron, and Taylor.

Proof. Consider the Frobenius map ¢, : E(K) — E(K) sending (z,y) — (29,y?). It
is well-known that Gal(K/K) ~ Z is generated by the Frobenius z — 29, so E(K) C
E(K) are exactly the fixed points of ¢,. This means that if P € E(K), then ¢ (P) =
P =id(P), so P € ker(id —p,). (We've seen this already in Example 6.6.) Thus, we
get the map

id—¢p, : E(K) - E(K)
P P— SOQ(P)7
which is indeed an isogeny since (id —¢,)(O) = O and it is non-constant. Furthermore,

Theorem 6.9 tells us that ¢, is separable. (It shows it for ¢ = p, but the proof is exactly
the same for powers of p.) Thus, we have the equalities

E(K)| = | ker(id —p,)| = deg(id —z,).
Writing this in terms of degree is great, because we can now use the fact that

degree gives a quadratic form. Namely, we want to use Lemma 7.12, which looks very
reminiscent to the statement of Hasse’s theorem.
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Indeed, applying this lemma gets us to the finish line directly. We have |E(K)| =
deg(id —¢,), as well as the standard degid = 1 and deg ¢, = ¢. The lemma gives us

[#E(K) —1—q| = |deg(id —p,) — degid — deg |
< 2\/ deg(id) deg(p,)
<24/,
as desired. O

Although this Hasse bound may not seem that significant, it actually has very
astounding consequences. In fact, one can say this is the analogue of the Riemann
Hypothesis over finite fields! This will be explained more in §8.3.

8 12/9 - Tate Module and Weil Pairing

8.1 Tate Module

Let E be an elliptic curve over a perfect field K, and let m > 2 be an integer relatively
prime to char K. Recall that E[m] ~ Z/mZ x Z/mZ. We will investigate the absolute
Galois action on the torsion points.

We have a natural action of Gal(K/K) on E[m] as follows: if P € E(K)[m], then

as [m](c(P)) = o(Im]P) = 0(O) = O, we conclude o(P) € E(K)[m| as well. This gives
us a Galois representation

Gal(K/K) — Aut(E[m)]) ~ GLy(Z/mZ)
o (P o(P)).

However, studying representations over Z/mZ is not so interesting, so we will do
better by looking at prime powers and their compatible Galois actions. This is the
appropriate, two-dimensional analogy of studying the f-adic numbers.

Definition 8.1 (¢-adic Tate Module). Let ¢ # p be a prime (here p = char K if
char K > 0). The /-adic Tate module of E is the inverse limit

T,(E) = lim E[¢"].

The elements in this Tate module are systems (P, ), such that P, € E[¢"] and [(]P, =
P, 1. One can check that T;(E) is a module over Z,, and in fact is isomorphic to

Ty(E) = lim E[("] ~ im Z/("Z x Z/0"T, ~ Ly x L.
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This means that, upon choosing a Zg-basis for T;(E), we have Aut(Ty(E)) =~
GLy(Z¢) — GL2(Qy), so we get a Galois representation

Gal(K/K) — Aut(Ty(E)) ~ GLy(Z;) C GLy(Qy).

Remark 8.2. If / = p = char K, then we can define the p-adic Tate module in the
same way and get

(B) = Z, FE is ordinary
o Eis supersingular

Remark 8.3. The construction of T,(F) is functorial, meaning if ¢ : E; — FEj is
an isogeny, then as ¢ o [("]g, = [("]g, o ¢, we have that ¢ induces a map on the
respective ("-torsion points. Taking the inverse limit gives us ¢, : Ty(Ey) — Ty(FE2)
where (P,)n — (¢(FPp))n.

For intuition, we can look at the case when K = C. There, we know E(C) ~ C/A for
some lattice A, and then Ty(E) ~ A®z7Z,. We also have the homology H,(E(C),Z) ~ A.
So it is good to think of the Tate module as H,(E) over some f-adic field.

Theorem 8.4. The map

Hom(El, Eg) X7z Ze = HOIIl(Tz(El), Tg(EQ))
P = P

is injective.

Remark 8.5. A weaker version of this statement is that the map Hom(E, Ey) —
Hom(7y(Ey), Ty(E2)) is an injection. One can prove this directly: observe that ¢, = 0
means F, ("] C ker ¢ for all n, in which case we can argue that ¢ factors through [¢"],
which is impossible for large enough n by a degree argument.

Remark 8.6. The map is surjective if K is a finite field or if K is a number field. In
general, this is known as the “Tate Conjecture,” and it was proven for finite fields by
Tate and for number fields by Faltings.

Proof. T unfortunately could not jot this down, but this is Theorem III.7.4 of Silverman.
I personally find the proof a bit weird and unenlightening, so I don’t feel so bad omitting
it from these notes. O]

8.2 Weil Pairing

As above, let F be an elliptic curve over K and m € N coprime to char K if char K = p >
0. We would like a way to study the Tate module, or more down-to-earth, the torsion
points E[m]. This will come in the form of a bilinear pairing E[m| x E[m| — i, (K).
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To start, recall that D = > np[P] € Div(E) is principal iff the following two
conditions are satisfied: (1) > np € Z and (2) > [np|(P) = Og.

Now let T' € E[m]. By the above, there exists some f € K(F)* such that div f; =

m|T] — m[O]. Let T" € E(K) such that [m]T" = T. Then, we have
7] O] :

([T = [0) = ([I"+R]—[R])

ReE[|m]
~ Y ([T -10)
ReE[m]

~m?*([T"] = [0]) ~ O,

where the first line is because [m] is unramified, the third line because |E[m]| = m?,

and the last equivalence because [m?]T" = O. From this, there exists some gr € K(F)*
with div gr = [m]*([T] — [O]). We can compare g§* and fr o [m] as follows:

div g7 = mdiv gr = m([m]*([T] — [0O]))
= [m]*(m([T] — [0])) = [m]" div fr
= div(fr o [m]).

After scaling appropriately, we can therefore assume ¢! = fr o [m)].

We now get to defining the Weil pairing. Let S € E[m]. Then for all X € E(K),
we have

gr(X +5)"™ = fr([m]X + [m]S) = fr([m]X) = gr(X)™,

so g7 is invariant under translation by S. This leads to the following definition:

Definition 8.7 (Weil Pairing). Let S, T € E[m|. Using the notation above, we define
a function

em : Elm] x E[m| = pm(K)
gr(X +5)

(S,T) — 7 (X)

We will prove that it is bilinear, as well as several other nice properties, below.
First, though, we must make clear that the pairing does not depend on our choice of
X. The reason is very simple: the morphism

E — P!
g(X +5)
9(X)

is not surjective, as it must be in p,,, so it must be constant.

X —
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Proposition 8.8. The Weil pairing

em : E[m] x E[m] — pn,
(S,T) — en(S,T)

satisfies the following properties:

1. Bilinearity: we have e,,(S14+52,T) = € (51, T)em(S2, T) and e, (S, T1+13) =
em (S, T1)em (S, Tz).

2. Alternating: we have e,,(T,T) = 1, and thus e,,(S,T) = e,,(T,S)™!. (Con-
sider e,,,(S+T,S+1T).)

3. Non-degenerate: If e,,(S,T) =1 for all S € E[m], then T = O.

4. Compatible with Galois action: If o € Gal(K/K), then e, (c(S),o(T)) =
o(en(S,T)).

5. Compatible with multiplication in m: If S € Elmm/] and T € E[m] C
E[mm/], then €, (S, T) = e ([m']S, T).

6. Dual Isogeny is Adjoint: Let ¢ : Fy — F5 be an isogeny and ¢ : Fy — Fj
be its dual. Then, for all S € Ej[m], T € Es[m|, we have e, (S,o(T)) =
em(p(S),T). In other words, ¢ and ¢ are adjoint with respect to the Weil
pairing e,,.

If you don’t care about these details and want to skip to something very cool, skip
to §8.3. Because of time, we only prove (1) and (6) here.

Proof. We start with (6), namely ¢ and @ are adjoint with respect to e,,. By definition,

recall
_ gr(X +9(9))
em(gD(S),T) - gT<X> )

where div(fr) = m[T] — m[O] and g¢r is defined to satisfy ¢g7* = fr o [m]. Recall also
that if o*([T] — [O]) = >_pnp[P] € Div(£)), then §(T') = > p[np|(P). From this fact,
we see that the divisors ¢*([T'] — [0]) and [§(T')] — [O] have the same degree, so there
must exists some h € K(F)* such that

¢ ([T] = 0]) = [@(T)] = [O] + div(h).
We thus have

div (fT}l:ZQ‘)) — div(fr o ¢) — mdiv(h)

= " div(fr) — mdiv(h)
= " (m[T] = m[0]) = ¢* (M[T] = m[O]) — m[O] + m[B(T)],
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and after canceling like terms on the right, we get

i (222 — mip()] - mio),

We also have from g = fr o [m] the equality
(QTOSO)m: frofmloy _ (fToso) o ]
h o [m)] (h o [m])™ h™ ’

() (X +9)

(#55) (0

_gr(eX) +¢(S)  h(m]X)
gr(p(X)) h([m]X + [1S)

gr(p(X) + ¢(S)

T gl D

and thus

em (S, @(T)) =

as sought.

Now we prove bilinearity (1). Linearity in the first component is not so bad, as we
can write

gr(X + (51 + S2)) gr(X + 51)

gr(X) gr(X + S1)
_gr(X + (S1+ 82)) gr(X + 51)
(X +5) gr(X)
= en(Se, T)en(S1,T).

€m(51 —+ SQ, T) =

For the second component, we first note that

. 9T +1» = [ml]* _ _ _
div <M> = [m]"([Ty + T2 = [O] = [T1] = [12] + 2[0])

= [m]'([1 + T3] = [Th] = [T + [0])
= [m]*div(h) = div(h o [m])

for some h € K(E)*. Thus, we can write g, 1, = ¢+ gr, g, - (ho[m]) for some ¢ € K .
This now allows us to compute

gTH—Tz(X + S)
en(S, Ty + 1) =
(STt o)== o

_ gT1<X + S)gT2(X + S)h<[m]X + [m]S)

gn (X)gTQ (X)h<[m]X)
= em(S, Tl)em(S, TQ),

as we have [m]S = O since S € E[m] by definition. O
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As a consequence, we can obtain a pairing on the Tate module by taking the inverse
limit over powers of £:

e: Ty(E) X Ty(E) = Ty(p).

Indeed, the bilinearity tells us that egm ([€]S, [(]T) = em+1(S,T)*, so the Weil pairings
een respect the transition maps [¢] : [é”“] — E["] and (-)¢ : pignt1 — pn for Ty(E)
and Ty(u), respectively.

Proof of Theorem 7.7. Suppose ¢, : Ey — FE,. We wish to show m =p+ @E If
char(K) # 2, we know that [2"] has degree (2")?. We now consider the Weil pairing
egn. For all S € F1[2"] and T € F5[2"], we have

ean (S, (¢ + 0)(T) = P(T) — D(T)) = ean (S, ( + &) (T))ean (S, @(T»—le%(g; 112<T>>—1 |
ilinearity

— ean (9 + ©)(S), T)ean (9(S), T) ean ((S), T) ™
(adjoint)

But as this is true for all S € E;[2"], we have by non-degeneracy that (m)(T) =
P(T) +(T) for all T € Eb[2"]. But (J,5, E2[2"] is an infinite set, so it is Zariski dense
in Fy. Thus, by continuity it must be true that (m)(T) = @(T) + ¢(T) for all
T € Ey(K). [

8.3 Weil Conjectures

With the Weil pairing in hand, we can now discuss the Weil conjectures for elliptic
curves!

Let K be a finite field wtih ¢ elements, and denote K, /K as the unique degree n
extension in K. Let F be an elliptic curve defined over K. Consider the generating
series

We call this the zeta function of FE.

Theorem 8.9 (Weil “Conjecture”). There exists a € Z such that the zeta function
of E' is rational of the form

1—aT + qT?

ZEKT) = oy A= g1y

Furthermore,
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1. We can factor
1—al +qT% = (1 —aT)(1 - BT)

with |a| = [8| = /g and aff = q.

2. It satisfies the functional equation

Z (E/K, qiT) = Z(E/K,T).

Exercise 8.10. This is really a statement about smooth projective varieties over finite
fields in general. Construct the zeta function for X = PV, express it as a rational
function, and show it satisfies a functional equation.

Remark 8.11. This is really a statement about cohomology. To give some taste, the
(1 = T) term in the denominator corresponds to dim H°(E) = 1, the (1 — ¢T') term
corresponds to dim H*(E) = 1, and the numerator corresponds to dim H'(E) = 2.
Here, the cohomology is étale cohomology, although since we only need to access up
to H?, we don’t need all the formalism and can just look at the Tate module and, in
effect, Tate cohomology.

Remark 8.12. Via the change of variable T' = ¢~*, we get

1 — aqfs + q172s
=g

C(E/K,s) =

The functional equation now becomes
((E/K,1—3s)=((F/K,s),

and the property |a| = |3| = /g says that the zeros of ((E/K,s) satisty |¢°| = /g,
and hence Re(s) = 1/2. This is exactly the Riemann Hypothesis for elliptic curves over
finite fields!

So how does one prove such a thing? We will show its beginning. Let ¢ # char(K)
be a prime. We’ve observed from earlier (Remark 8.5) that we have an injection

End(F) — End(T,(F))
© = Py

If we choose a basis of T)(F) ~ Z; x Z;, we can express ¢, as a matrix, and in
particular we can define the trace and determinant Tr(p,), det(py) € Zy.

Proposition 8.13. We have

det(ipr) = deg(p)
Tr(pe) = 1+ deg(yp) — deg(id —¢).
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| In particular, det(ypy), Tr(py) € Z are independent of £.

Proof. Let {vy,v2} be a Zg-basis of T;(E), and express ¢, = [2 5] with respect to this
basis. Taking the Weil pairing e on Ty(E), we have

Pev1, Pev2) (adjoint)

Thus, by non-degeneracy of e, we have deg(y) = det(y). Now for the trace, we use
deg ¢ = det ¢, and p, = [2 Y] to compute

1+ det g, —det(id —p,) =1+ (ad — bc) — (1 —a)(1 —d) + be
=a+d="Tr(p),

as desired. O

Now returning to the specific case of E being defined over a finite field, let ¢ = ¢, :
E — E be the ¢""-power Frobenius morphism. We know id —¢" is separable, hence
#ker(id —¢") = deg(id —¢™). But the kernel is just E(K,,), and thus

|E(K,)| = deg(id —¢").

Now from the above proposition, we have that det(T — ¢,) = T? — Tr(py)T + det(¢y) €
Z[T). Thus, we can find complex roots

ZIT) > det(T — ) = (T —a)(T'—B), «,BeC.

But at the same time, we compute directly

m > _det(mid —ny,)  deg(mid —np) -

det (— — Yy 0
n

n? n?
for all m/n € Q. This restricts our possibility for «, 5. In particular,

1. If o, 8 € R, then we must have @ = 8 (else we can find some m/n € Q with
det(m/n — @p) < 0).

2. If a, f ¢ R, then they must be complex conjugates since (T'— «)(T — ) € Z. In
particular, we have a8 = det(yy) = deg(y) = ¢, and so |a| = 5] = /7.
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Since we can consider ¢, as the diagonal matrix with entries o and 3, we deduce
the characteristic polynomial for ¢y is

det(T —¢f) = (T — a")(T = "),
and thus
|E(Ky)| = deg(id —¢}) = det(id —¢f)
=(1-a")(1-p")=1-a"=p"+q"
We now prove the Weil Conjecture for elliptic curves in earnest.

Proof of Weil Conjecture (Theorem 8.9). Consider the log

log Z(E/K,T) = |E(Kn)\%.

Using |E( n)|] = 1—a" — f" 4+ ¢" obtained above, as well as noting the standard
> ops1 5= = —log(1 —T), we have

log Z(E/K,T) = —log(l1 = T) +log(1 — aT) + log(1 — ST) — log(1 — ¢T),
and so
(1—-aT)(1-pT)
(1-T)1—qT) "
We check that Z satisfies the claimed functional equation. We expand

s (o 1) 0@) (i)
7 (/8 r) - gl_q%?(l__)
)

Z(EJK,T) =

qT — o) (qT - B)
- (¢T - 1D(T —q)
_q(l = (a+B)T +qT?
q(1 =T)(1 —qT)
B 1 —aT + qT? 2(BJK.T),
TO-D0-a)
where the last line follows from « + 8 = a by definition of «, 3. m

9 12/16 - Mordell-Weil Theorem

Last class! As the section title suggests, we will discuss the Mordell-Weil Theorem.

Let K be a number field and F an elliptic curve over K. Then, the Mordell-Weil
Theorem states:
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Theorem 9.1 (Mordell-Weil Theorem). The group E(K) is a finitely generated
abelian group, so it can be decomposed as

E(K)=2Z & E(K)ors,

where 1 € Z>q is the rank of F(K) and E(K )i is a finite group.

There are many natural questions one can ask here, including:

1. What are the possibilities for the torsion group?
2. What are the possible ranks of an elliptic curve over K7
3. What is the distribution of the ranks?

4. What arithmetic information does the rank contain?

Each of these questions begets very involved and rich discussions. Professor Fresan
alluded to the history of some of them, but frankly I did not understand his spoken
French. We will elaborate more on these throughout the lecture though, I presume.

9.1 Weak Mordell-Weil

How does one go about proving such a statement? It involves two very different steps.
The first gives us, as a consequence, the finiteness of the rank.

Theorem 9.2 (Weak Mordell-Weil). Let E be an elliptic curve over a number
field K. Let m > 2 be an integer. Then, F(K)/mE(K) is a finite group.

Remark 9.3. Oftentimes, it is convenient to study the case m = 2, as we understand
the 2-torsion of F(K) relatively well.

We first start by reducing to the scenario E[m] C E(K), which will come in handy
in the proceeding steps. We do this via the following lemma.

Lemma 9.4. Let L/K be a finite Galois extension. If E(L)/mE(L) is finite, then
E(K)/mE(K) is finite as well.

Proof. Consider the exact sequence
0= (E(K)NnmE(L)/mE(K) — E(K)/mE(K) — E(L)/mE(L).

Denote ® as the second term in the sequence. It suffices to show @ is finite.
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For P € @, let Qp € E(L) be a point such that [m]Qp = P. We define a map (just
as sets — this is not a group morphism!)

Ay Gal(L/K) — E[m)|
o —o(Qp) — Qp.

This is well-defined because [m](c(Qp)—Qp) = o([m]Qp)—[m|Qp = o(P)—P = O.
Note that this in turn gives us a map A : & — Mor(Gal(L/K), E[m]) where P — Ap.
Note again that the set on the right consists of morphisms of sets, not as groups.

We show that A is injective. Observe that if \p = A\p/, then 0(Qp) —Qp = 0(Qp/) —
Qp, e, 0(Qp — Qp) = Qp — Qp. But this is true for all 0 € Gal(L/K), hence
Qp — Qp € E(K). Thus,

P — P =[m](Qp — Qp) € mE(K),

so P =P in ® as desired.

Now we can quickly show @ is finite. We know now that A provides an injection
¢ — Mor(Gal(L/K), E[m]), and the latter set of morphisms is finite because both
Gal(L/K) and E[m]| are finite. As stated before, this then implies E(K)/mE(K) is
finite since ® = ker(F(K)/mE(K) — E(L)/mE(L)). O

Remark 9.5. One can see this A map is the analogue of Kummer theory for elliptic
curves! I don’t know the details, but here are some remarks that gesture towards
Kummer theory:

1. In Kummer theory, we consider something like o( 8/z)/ {/x. Above, division is
subtraction in E[m], and the m'™ root is what we’re doing when we consider

2. Although Ap is not a group homomorphism, it is a cocycle. (This is easy to
check, just write it out!) So we are really looking at the first group cohomology of
Gal(L/K) with values in E[m], and ® is in some sense measuring a certain kind
of obstruction.

Since E[m] is finite, we can guarantee E[m] C E(L) for some finite extension L/K.
Lemma 9.4 now tells us that proving E(L)/mE(L) is finite implies E(K)/mE(K) is
finite. Thus, we may assume from now on that E[m| C E(K).

We now introduce something called the Kummer pairing. (The choice of name
fortifies Remark 9.5.)

Definition 9.6 (Kummer Pairing). The Kummer pairing
k: BE(K)x Gal(K/K) — E[m)]
is defined as follows. Let P € E(K), and let Q € E(K) such that [m]Q = P. We let
k(P o) =0(Q) - Q.
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Proposition 9.7. The Kummer pairing satisfies the following (expected) proper-
ties:

1. It is well-defined;
2. It is bilinear;
3. Its left kernel (in E(K)) is mE(K).

4. Tts right kernel (in Gal(K/K)) is Gal(K /L), where L = K(Im]'E(K)), ie.,
L is the compositum of all residue fields K’ = K(Q) for Q € E(K) satisfying
[m]Q € E(K).

Remark 9.8. Note that in (4), L/K is Galois since Gal(K/K) sends [m]"'E(K) to
itself.

Corollary 9.9. Taking the appropriate kernel on both sides, this means that the induced
pairing
k:E(K)/mE(K) x Gal(L/K) — E[m]
18 perfect. In particular, this means
E(K)/mE(K) ~ Mor(Gal(L/K), E[m]).
Proof of Proposition. Well-definedness (1) requires two checks. First, we have

[mlk(P,0) = [m](0(Q) — Q) = o([m]Q) — [m]Q = O.

We also show that x is independent of our choice of (). Observe that if [m|Q’ = P
as well, then it is of the form @ + T for some T' € E[m], in which case

o(@+T) - (Q+T)=0(Q)-Q+0o(T)-T=0(Q) - CQ

since we assumed E[m] C E(K).

We show bilinearity (2) routinely: we have linearity in the first component by defi-
nition, and linearity in the second follows from the computation

where the last equality follows again from «(P,7) € E[m] and E[m] C E(K) by as-
sumption.

We now prove (3). If P € mE(K), then for any @) € F(K) such that [m|Q = P,
we clearly have o(Q) — @ = O. Thus, the kernel contains mFE(K). We want to show
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the reverse inclusion. Suppose k(P,o) = 0 for all o € Gal(K/K). But ¢(Q) = Q for
all 0 € Gal(K/K) implies Q € F(K), and hence P € mE(K).

Finally, we prove (4). The kernel clearly contains o € Gal(K /L) since by con-
struction, each @ with [m|Q = P lives in F(L), and hence c(Q) = Q. Conversely,
suppose 1 (P, o) = 0 for all P € E(K). This means ¢(Q) = Q for all Q € F(K) with
[m]@ = P. But these are exactly the points of E(L), so 0(Q) = @ for all Q € E(L)
implies o € Gal(K /L) as desired. O

Let’s recall what we want to show. We want to show the Weak Mordell-Weil
Theorem (9.2), which states that E(K)/mE(K) is finite for m > 2. We showed that if
L/K is finite Galois, then E(L)/mE(L) is finite implies E(K)/mE(K) is finite. Thus,
we can safely assume E[m] C F(K). We also showed from the Kummer pairing that
E(K)/mE(K) ~ Mor(Gal(L/K), E[m]) where L = K([m]'E(K)). If we want to show
E(K)/mE(K) is finite, it suffices to show that Gal(L/K) is finite. This is our present
objective.

9.2 Elliptic Curves over Local Fields

What we're going to do now is transition from elliptic curves over global fields to those
over local fields by taking completions. The upshot of this is that studying local fields
often amounts to studying the corresponding (finite) residue fields, which we understand
well. This will inform us about our Galois extension of global fields, which is our present
scenario.

Denote M as the set of absolute values over K, up to equivalence. We can write
Mg = MY U Mg, where MY are the finite places of K and M§® are the infinite
(archimedean) ones. For each v € M}, consider the completion K, of K with respect
to v. Define O, and m, as standard, and denote k, = O,/m, as the residual field at v.

If F is an elliptic curve over K, then it admits a Weierstrass equation
y2 + a2y + asy = >+ a2x2 + a4 + ag

where the a; € K. But K C K, and after an appropriate change of variables, we can
force a; € O,. We call such a Weierstrass equation a minimal Weierstrass equation
if (A) is minimal over all Weierstrass equations for £ with coefficients in O,,.

Definition 9.10 (Good and Bad Reduction). We say E is good reduction at v if the
curve

B, :y* +aray + Gy = 2° + G32° + @w + T,
where the @;’s are all reductions mod m,, is smooth, i.e., El, is an elliptic curve over
ky. Otherwise, we say E has bad reduction at v.

Remark 9.11. An elliptic curve E over K can only have finitely many places with bad
reduction.
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Theorem 9.12. Let v € MY and let m € N be relatively prime to char x,. Sup-
pose E is an elliptic curve over K with good reduction at v. Then, the reduction
map B

E(K) = E,(ky)

induces an isomorphism E[m] = E,(k,)[m].

Remark 9.13. Why can we have such a map? Let [z :y : 2] € E(K) C P} C P .
Why can we assume it is contained in P?(0,)? This follows from the valuation criterion
for properness for schemes.

Proof. See Professor Dat’s notes for the proof. m

We now return to the setting where L = K([m]"'F(K)). We will prove some
properties about the extension L/K.

Proposition 9.14. Let K be a number field, E an elliptic curve over K, and m > 2
an integer. Denote L = K([m] 'E(K)). Then,

1. Gal(L/K) is abelian, and the order of every element divides m.
2. Let S be the (finite) set of places given by

S = {v € M} | E has bad reduction at v} U {v € My | |m|, # 1} U M®.

Then, L/K is unramified outside of S.

Proof. For (1), first recall Corollary 9.9, which gives us an isomorphism
Gal(L/K) ~ Mor(E(K)/mE(K), E[m]).

The statement now follows because the group on the right is abelian and the order of
any point in E[m] divides m.

For (2), let v € My — S. Let Q € E(K) such that [m]Q € E(K). It suffices to
show that K’ = K(Q) is unramified at v. Consider any place 1/ € Mg/ lying over v,
and consider the completion K/,. We then have an extension of residue fields !, /x,.

Definition 9.15 (Inertia Group). The inertia group with respect to v/ /v is the kernel
of the reduction map

Ly, = ker (Gal(K.,/K,) — Gal(x), /k,)).

We say the extension K'/K is unramified at v if 1,,,, = {1}.
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So we wish to show that I,/,, = {1}, in which case we show K'/K is unramified,
and hence L/K is unramified.

Consider the reduction map ~ : E(K') — E,(x,). Let o € I, C Gal(K'/K),
where the inclusion is possible after a choice of embedding K’ — K],. By definition of
the inertia group, we have

e~

Q) -Q=0Q) -Q=Q-Q=0.

As ~ is injective on E[m] (see Theorem 9.12), it suffices to show that ¢(Q) — Q €
E[m], in which case we would force o(Q) = @ and hence the inertia is trivial. But this
follows from the computation

so indeed 0(Q) — Q € E[m). O

The upshot of this proposition is that we can invoke the following theorem from
algebraic number theory to obtain that L/K is finite.

Theorem 9.16. Let K be a number field and S C Mg a finite set of absolute
values containing Mz?. Let m € N. Suppose L/K is an extension satisfying:

1. Gal(L/K) is abelian,
2. The order of every element divides m,

3. L/K is unramified outside of S.

Then, L/K is finite.

To recap on how this finishes the proof: we want to show that E(K)/mE(K) ~
Mor(Gal(L/K), E[m]) is finite. But E[m] is clearly finite and the above theorem dic-
tates that Gal(L/K) is finite, so F(K)/mFE(K) is finite as desired. This completes the
proof of Weak Mordell-Weil!

9.3 Heights

Now how do we go from Weak Mordell-Weil to Mordell-Weil? Note that we need some
notion of F(K) being “discrete.” To illustrate, we have R/mR is trivial, but clearly R
is not finite. So we want to rule out such scenarios.

To do this, we will introduce this notion of a height function which, as we will see
shortly, gets us directly to the finite generatedness of the Mordell-Weil group. We will

first speak in generalities, so we start with some abelian group A, but we really care
about A = E(K).
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Theorem 9.17 (Height Function implies Finitely Generated). Let A be an abelian
group and let m > 2 be an integer such that A/mA is finite. Suppose there exists
a function

h:A—R
with the following properties:

1. Let @ € A. There exists ¢; = ¢1(A, Q) such that, for all P € A,
h(P + Q) < 2h(P) + c;.

2. There exists ca = c3(A) such that, for all P € A,
h(mP) > m*h(P) — c,.

3. For all c3, the set
{P e A|R(P) <cs}

is finite.

Then, A is of finite type, i.e., it is finitely generated.

Proof. Let Qq,...,Q, be representatives of A/mA. Let P € A. Foreach 1 < j <,
choose i; € {1,2}, and define P; inductively like

P=mP +Q;
P =mP + Q

Pn—l :mPn+an

By conditions 2 (first line) and 1 (third line), we have

A(P) < — (h(mP) + )
< % (M(Pj—1 — Qi;) + ¢2)
- 1

= (2h(Pj_1) + ¢} + ¢2)
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where ¢} = max{ci(A4, Q;,}. Repeating inductively, we get

n—1

ne) < () P+ (b4 20 ) e
< <i>nh(P) Late

m?2 — 2

For n large enough, this gives us h(P,) < 1+ (¢} + ¢2). From condition 3, this means
that the P,’s are contained in some finite set, so we conclude by the equality

P=m"P, + Z mj_lQij

j=1
that we can write any P as a linear combination of the ();’s and points in the finite set
{QeAlh(Q) <1+ 3(d + )} O

To prove the Mordell-Weil Theorem, all we have to do now is construct a height
function h : E(K) — R with the three properties above. When K = Q, we can pick
the following. We first define a height function on Q.

Definition 9.18 (Height on Q). Let t = p/q € Q where p, g are relatively prime. The
height of ¢ is defined as

H(t) = max([p], [q])-

Definition 9.19 (Height on E(Q)). Let E be an elliptic curve over Q given by a
Weierstrass equation y* = x® + Ax + B. For P = (x,y) € E(Q), we define the height
of P via the function

he : B(Q) —» R
P log H(z(P)) P #O
P=0.
Remark 9.20 (Height for E(K)). For an arbitrary number field K, we look at the
minimal polynomial of ¢, say

d
P(X)=> a;X7, a; €L
j=0

We define the height on K via

H(t) = max{Ja,{}

Hahn Lheem Page 64



Elliptic Curves 12/16 - Mordell-Weil Theorem

We check that this function h, satisfies the three desired properties. It satisfies (3)
because the set {t € Q | H(t) < C'} is finite (bounded above by (2C +1)?) and for each
x, there is at most two values of y such that (z,y) € E(Q). For the first two conditions,
one can look at Silverman, Chapter VIII, Lemma 4.2, which says

he(P+ Q) <2h,(P)+ ¢

We have therefore constructed a height function for F(K'). Combining with Weak
Mordell-Weil (9.2) and Theorem 9.17 gives the Mordell-Weil Theorem.

9.4 Birch and Swinnerton-Dyer Conjecture

Let’s get a taste of what arithmetic information we can get from the Mordell-Weil
group. In particular, a lot is left to learn about the rank of an elliptic curve.

Suppose E/Q has good reduction at p. From the Weil Conjectures (now proven),
we know that the reduction Ep /F, has a zeta function

1—a,T + pT*

Z(E,/F,,T) = (1-T7)(1—pT)

which satisfies nice analytic properties (e.g., functional equation). We can patch up
these local parts together to get the L-function of an elliptic curve

1
1 — app—s + pl—Qs

LE/Qs) = ]

p good red

which is holomorphic on Re(s) > 1 + % We want L-functions to have nice analytic
properties, namely meromorphic continuation and analytic functions. Wiles proved
that L(F/Q, s) can be holomorphically continued to all of C. Even better, there exists
some newform f € S3(I'o(IV)) such that L(E,s) = L(f,s).

The Birch and Swinnerton-Dyer Conjecture claims

rank(E(Q)) = ord,_; L(E/Q, s) |

This has been proven in the case where both the “arithmetic” rank on the left and
the “analytic” rank on the right are either 0 or 1. The case where rank = 1 is due to the
influential works of Kolyvagin and Gross—Zagier, and these methods (Euler systems,
Gross—Zagier formulae) continue to be studied in great depth. Beyond r = 1, though,
there has been quite little progress.

Hahn Lheem Page 65



	Preface
	11/04 - Complex Elliptic Curves
	Why do we care?
	Elliptic Functions
	The Weierstrass wp-function
	Uniformization Theorem
	Moprhisms of Complex Elliptic Curves
	Aside: Complex Multiplication

	11/12 - Generalizing the Theory of Riemann Surfaces
	Divisors

	11/19 - Differential Forms
	Differential Forms
	Divisors of Differential Forms

	11/19 - Elliptic Curves (at last)
	Elliptic Curves

	11/25 - Group Law on Elliptic Curve
	11/26 - Morphisms of Elliptic Curves
	Morphism as Group Morphism
	Isogeny
	Aside: Discriminant and j-invariant

	12/2 - Special Morphisms
	Frobenius Morphism
	Dual Isogeny
	Elliptic Curves over Finite Fields

	12/9 - Tate Module and Weil Pairing
	Tate Module
	Weil Pairing
	Weil Conjectures

	12/16 - Mordell–Weil Theorem
	Weak Mordell–Weil
	Elliptic Curves over Local Fields
	Heights
	Birch and Swinnerton-Dyer Conjecture


