
THE WEIL CONJECTURES FOR ABELIAN VARIETIES

HAHN LHEEM, TOMMASO LUCANTONI

Abstract. We prove two of the Weil conjectures for abelian varieties over finite
fields. First, we show that the zeta function attached to an abelian variety is a
rational function, where we can further factor the numerator and denominator into
polynomials with integer coefficients. We then prove the analogue of the Riemann
Hypothesis for finite fields, which translates to a statement about the magnitude of
the complex roots of each polynomial factor in the zeta function.
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1. The Weil Conjectures

In 1949, André Weil postulated the following conjecture about smooth projective
varieties over finite fields.

Conjecture 1.1 (Weil Conjectures). Let X be a smooth projective variety of dimension
d over a finite field Fq. Denote Nn := #X(Fqn). Define the zeta function of X as the
power series Z(X,T ) ∈ Q[[T ]] given by

Z(X,T ) := exp

(
∞∑
n=1

Nn
T n

n

)
.

The zeta function satisfies the following properties:
1



2 HAHN LHEEM, TOMMASO LUCANTONI

(1) (Rationality) There exist polynomials Pi(T ) ∈ Z[T ], for 0 ≤ i ≤ 2d, such that

Z(X,T ) =
P1(T )P3(T ) · · ·P2d−1(T )

P0(T )P2(T ) · · ·P2d(T )
.

(2) (Functional Equation) The zeta function satisfies the functional equation

Z

(
X,

1

qdT

)
= ±qχd/2T χZ(X,T )

where χ =
∑

i≥0(−1)i degPi(T ).
(3) (Analogue of Riemann Hypothesis) Each Pi(T ) splits over C as

∏
j(1− αi,jT ),

where each αi,j satisfies |αi,j| = qi/2.
(4) (Betti numbers) If X is the good reduction at p of a smooth projective variety

X̃ over some number field K ↪→ C, where p ⊂ OK is prime, then degPi(T ) is

equal to the ith Betti number of X̃(C).

All four conjectures have since been proven, thanks to the advent of a new cohomology
theory for varieties over finite fields – étale cohomology, first laid out in SGA4 [AGV64]
and SGA5 [Gro77] – which is compatible with singular cohomology for the complex
analytic topology. The most difficult of these conjectures is the analogue of the Riemann
Hypothesis, which was proved by Deligne in both [Del74] and [Del80].

In this report, we will provide a proof of the first and third statements for when X
is an abelian variety over a finite field, primarily following [Mum74].1

1.1. Cultural Asides. The proof of the Weil conjectures is known as one of the hall-
mark achievements of mathematics in the 20th century. The benefits of these statements
even just for the abelian variety setting are far-reaching. We illustrate a few examples.

The first, addressed in Professor Cadoret’s lecture, is that we can obtain a Q-
compatibility result for a system of Galois representations obtained by the ℓ-adic re-
alization of some abelian variety. Let X/Fp be an abelian variety and ρℓ be the ℓ-adic
Galois representation given by its ℓ-adic Tate module (defined just before §2.1). De-
note π as the Frobenius morphism at p, which acts on X(Fp) and hence on TℓX (see
Lemma 5.2). Once we identify TℓX ≃ H1

ét(XFp
,Zℓ)

∨, we can obtain that P1(T ) is the

characteristic polynomial of π on H1
ét.

Given two primes ℓ, ℓ′ ̸= p, taking the ℓ-adic cohomology of XFp
will produce two

factorizations of Z(X,T ) as in conjecture (1) above. We will write the polynomials cor-
responding to ℓ, ℓ′ as Pi,ℓ(T ), Pi,ℓ′(T ), respectively. Note that the definition of Z(X,T )
is independent of any choice of ℓ. But by looking at the roots of each Pi,ℓ(T ) (resp.,
Pi,ℓ′(T )), the Riemann Hypothesis forces equality Pi,ℓ(T ) = Pi,ℓ′(T ) for each 0 ≤ i ≤ 2d.
In particular, for i = 1 we get that the characteristic polynomial of the Frobenius is
independent of ℓ.

We list a few more notable consequences below, albeit with minimal detail.

1All page number references are for the second edition, not the first.
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• We can get a Hasse-like bound for the number of Fqn-rational points of X. In
particular, the Riemann Hypothesis will guarantee that∣∣#X(Fqn)− qn dimX

∣∣ = O
(
qn(dimX− 1

2)
)
.

This follows from the expression for Nm given in the beginning of §5.1.
• The Weil conjectures for curves can be deduced from the Weil conjectures for
their Jacobians, which are abelian varieties. This sequence of ideas is summa-
rized in Exercises V.1.10 and C.5.7 of [Har77].
• Deligne proved in [Del71] that for any normalized new eigenform f of weight
k ≥ 2 and level N , the pth Fourier coefficient ap(f) (for p ̸= N) satisfies |ap(f)| ≤
2p(k−1)/2. In his proof, he shows that this result (the Ramanujan conjecture) is
implied by the Weil conjectures for modular curves.
• One may ask whether all maps between ℓ-adic Tate modules come from mor-
phisms between their corresponding abelian varieties. (In other words, is The-
orem 3.5 really an isomorphism?) By results of Tate and Honda, they gave
the affirmative in the setting of finite fields if one only considers the Galois-
equivariant maps between Tate modules. A neat consequence of this is that
there is a bijection between isogeny classes of abelian varieties over Fq and al-
gebraic numbers with magnitude

√
q, where X corresponds to an eigenvalue

of Frobenius on TℓX. This implies, for instance, that all supersingular ellip-
tic curves over Fq are isogenous. Some discussions can be found in [Mum74,
Appendix I].

2. Abelian Varieties

Throughout, we denote k to be an algebraically closed field. A variety over k is an
integral separated scheme of finite type over k.

Definition 2.1 (Abelian Variety). An abelian variety over k is a complete variety X
over k with k-morphisms of varieties m : X ×X → X (multiplication), e : Spec k → X
(identity), and ι : X → X (inverse) satisfying the usual group axioms.

Remark 2.2. Although the definition does not require the group law to be commuta-
tive, one can show that commutativity must follow if X is complete. This is a direct
consequence of the Rigidity Lemma, see [Mum74, pp. 40-41]. In this spirit, we denote
0 = 0X ∈ X as the image of e.

We will denote x + y := m(x, y). Let x ∈ X. We denote Tx as the translation-by-x
map Tx : y 7→ x + y. It follows from m being a morphism of varieties that Tx is an
automorphism of X as a variety.

Remark 2.3. Via translation, one can show an abelian variety X must be everywhere
non-singular. Indeed, there must exist a non-singular point x0 ∈ X, and as Tx is a
morphism of varieties, Tx(x0) = x0 + x is non-singular for all x ∈ X.

A homomorphism of abelian varieties is a morphism of varieties which is also a
group homomorphism on the underlying k-points. We denote the additive group of all
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homomorphisms between X and Y as Hom(X, Y ) and the ring of endomorphisms of X
as End(X). Later, we will be interested in the Q-algebra End0(X) := End(X)⊗Z Q.

Definition 2.4 (Isogeny). An isogeny is a surjective homomorphism of abelian vari-
eties X → Y with finite kernel.

We say two abelian varieties are isogenous if there exists an isogeny between them.
Isogenies are of particular importance, one reason being that they become isomorphisms
(hence invertible) in End0(X). (See the discussion directly following Theorem 3.1.)

Suppose f : X → Y is an isogeny. Following general facts of morphisms of varieties,
we have that the separable degree of f is degs f = f−1(y) for almost all y ∈ Y . But
the group structure on Y allows us to construct an explicit bijection between any two
fibers, so we get the following result.

Proposition 2.5. For an isogeny f between abelian varieties,

degs(f) = #ker(f).

Example 2.6 (Multiplication-by-n). Let n be an integer such that char k ∤ n. Denote
the multiplication-by-n on X by nX and its kernel as X[n]. First, it is separable, as
one can show the induced map on the tangent space at 0X is also multiplication-by-n.
Using a collection of results in the next subsection, one can also show that deg nX , and
hence #X[n], is n2 dimX . But this is true for all n, in particular all divisors m | n, which
is only possible if X[n] ≃ (Z/nZ)2 dimX as groups.

Although they will not be used until later, we introduce the ℓ-adic Tate module for
ℓ ̸= char k prime. The ℓ-adic Tate module of X is simply the inverse limit

TℓX := lim←−
n

X[ℓn],

where the inverse system consists of the multiplication-by-ℓ maps X[ℓn+1]
ℓX−→ X[ℓn].

From above, we have X[ℓn] ∼= (Z/ℓnZ)2 dimX as groups, meaning TℓX ≃ Z2 dimX
ℓ as

Zℓ-modules.

From the Grothendieck perspective using cohomology, the ℓ-adic Tate module is at
the heart of this story. Indeed, for an abelian variety X over k, the ℓ-adic Tate module
is isomorphic to the dual of H1

ét(Xk,Zℓ). Furthermore, abelian varieties satisfy the
amazing property that for any 1 ≤ r ≤ 2 dimX, we have an isomorphism∧r

H1
ét(Xk,Zℓ) ≃ Hr

ét(Xk,Zℓ).

Although not done in the language of étale cohomology, this perspective elucidates
our proof of the Weil conjectures, such as the factorization of the polynomials Pr(T ),
which are just the characteristic polynomials of π on Hr

ét, in §5.1.
Even better, morphisms of abelian varieties induce Zℓ-linear maps between their

ℓ-adic Tate modules. This comes from the fact that any f : X → Y restricts to
f (n) : X[ℓn] → Y [ℓn] for all n ≥ 1, and these f (n) morphisms are compatible with
multiplication-by-ℓ. We denote the induced map from f : X → Y on the Tate modules
as Tℓf .
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2.1. Dual Abelian Variety. Associated to an abelian variety X is its dual variety
X∨, which is isogenous to X. This construction will be crucial in understanding the
structure of End0(X).

Our first useful feature of line bundles on complete varieties is the Seesaw Theorem.
It is called so roughly because it says that for a line bundle on a product of complete
varieties, its restrictions on the first component dictate those on the second. We state
it without proof; see [Mum74, p.51] for a proof.

Theorem 2.7 (Seesaw Theorem). Let X be a complete variety, T a variety, and L ∈
Pic(X×T ). Then, the set T ′ := {t ∈ T : LX×{t} ≃ OX×{t}} is closed in T . In addition,
there exists some L′ ∈ Pic(T ′) such that L|X×T ′ ≃ pr∗2L′ where pr2 : X × T ′ → T ′.

Corollary 2.8. Let X, Y be complete varieties, and choose Ly ∈ Pic(X) (more hon-
estly, a line bundle on X×{y}) for each y ∈ Y . There exists at most one L ∈ Pic(X×Y )
such that L|{x}×Y is trivial for some x ∈ X and L|X×{y} ≃ Ly for all y ∈ Y .

Proof. It suffices to consider the case where Ly ≃ OX for all y ∈ Y . But then the
Seesaw Theorem tells us that L ≃ pr∗2L′ for some L′ ∈ Pic(Y ). The second condition
translates to L|{x}×Y ≃ (pr∗2L′)|{x}×Y ≃ L′ being trivial, so L is trivial. □

This helps yield the Theorem of the Cube, which dictates more generally the behavior
of line bundles on (products of) complete varieties. We state this also without proof,
but see [Mum74, p.53].

Theorem 2.9 (Theorem of the Cube). Let X, Y, Z be complete varieties2 with specified
base points x0, y0, z0 respectively. Let L be a line bundle on X × Y × Z such that its
restrictions to each of {x0}×Y ×Z, X×{y0}×Z, and X×Y ×{z0} are trivial. Then
L must be trivial.

This gives us the important Theorem of the Square.

Theorem 2.10 (Theorem of the Square). Let X be an abelian variety and L ∈ Pic(X).
Then for any x, y ∈ X,

T ∗
x+yL ⊗ L ∼= T ∗

xL ⊗ T ∗
yL.

Proof. Let pi : X × X × X → X the projection on the i-th component, denote by
nij = pi + pj and by n = p1 + p2 + p3.

We want to apply the theorem of the cube to the line bundle

M = n∗L ⊗ n∗
12L−1 ⊗ n∗

23L−1 ⊗ n∗
13L−1 ⊗ p∗1L ⊗ p∗2L ⊗ p∗3L

on X ×X ×X. Consider q : X ×X → X ×X ×X such that q(x, x′) = (0, x, x′). Then

q∗M = m∗L ⊗ q∗1L−1 ⊗ q∗2L−1 ⊗m∗L−1 ⊗ 0∗L ⊗ q∗1L ⊗ q∗2L
where qj is the projection on the j-th factor, m is the addition and 0 is the zero map.
Hence q∗M is trivial and by symmetryM is trivial on X×{0}×X and on X×X×{0}
too. Therefore, applying the theorem of the cube,M is trivial.

2The result still holds if one of them is not complete. As all of our applications will be when X,Y, Z
are abelian, hence complete, this hypothesis suffices.
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Finally, the statement follows taking the pullback ofM with respect to (cx, cy, id) :
X → X×X×X, where cx and cy denote the constant map at x and y respectively. □

Fix a line bundle L on X. Define ϕL to be the natural map (a priori of sets)

ϕL : X → Pic(X)

x 7→ (T ∗
xL ⊗ L−1).

The Theorem of the Square shows that ϕL is in fact a group homomorphism. We
care about ϕL in the case where L is ample. The existence of an ample line bundle is
guaranteed by the following lemma.

Lemma 2.11. Every abelian variety is projective.

Proof. It suffices to find a divisor D ∈ Div(X) such that the complete linear system
|D| separates points and tangent vectors.

We begin by constructing a divisor D0 =
∑
Zi which separates 0X ∈ X from all other

points and 0 ∈ T0X from all other tangent vectors. We can do this using the crucial fact
that X, being a variety, is Noetherian, hence satisfies the descending chain condition
for closed subsets. In brief, we can implement the following procedure, outlined below:

(1) Suppose we have prime divisors {Z1, . . . , Zr} such that
⋂
Zi ⊋ {0}. Let p ̸= 0

be in the intersection.
(2) We can find some open affine subset which contains both 0 and p: choose an

open affine neighborhood U ∋ 0, choose some u ∈ U ∩ (U + p), and then take
U ′ := U + p− u. We may identify U ′ as a closed subscheme of some An.

(3) In this affine space, we can find a hyperplane H ⊂ An which passes through 0
but not p.

(4) Define Zr+1 := H ∩ U ′ ⊂ X.

By the Noetherian property, this process must eventually terminate, so we can find
a finite set of prime divisors whose collective intersection is just {0X}. We can run a
similar procedure to isolate just the zero tangent vector.

Denote this finite set of prime divisors from this procedure as {Z1, . . . , Zn}. We claim
that the divisor

D := 3D0 = 3
n∑

i=1

Zi

produces the desired complete linear system.

We prove that |D| separates points; the proof for separating tangent vectors is similar.
Note that for any collection of points x1, . . . , xn, y1, . . . , yn, the Theorem of the Square
(2.10) guarantees that

n∑
i=1

T ∗
xi
Zi + T ∗

yi
Zi + T ∗

−xi−yi
Zi ∈ |D|.

Fix p ̸= q ∈ X. Note from our choice of {Zi} that there must exist some i such
that q − p /∈ Zi. Setting p = xi, note then that q /∈ T ∗

pZi, but clearly p ∈ T ∗
pZi since
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0 ∈ Zi. We also have that {yi : q ∈ T ∗
yi
Zi} (and likewise {yi : q ∈ T ∗

−p−yi
Zi}) is a proper

closed subset of X, hence we can find some yi which lies in the intersection of their
complements. Similarly, for all other j ̸= i, we can always find a pair of points (xj, yj)
such that q does not lie on any of the divisors T ∗

xj
Zj, T

∗
yj
Zj, T

∗
−xj−yj

Zj. In conclusion,

we have constructed an effective divisor in |D|, namely
∑n

i=1 T
∗
xi
Zi + T ∗

yi
Zi + T ∗

−xi−yi
Zi,

which separates p and q. As this construction works for any p ̸= q ∈ X, we are done. □

Fix an ample line bundle L on X. Restrict the codomain of ϕL to its image so that ϕL
is surjective. As ϕL is a group homomorphism, its image is an abelian group. Our aim
is to enrich ϕL to be an isogeny of abelian varieties, i.e., construct an abelian variety,
which we will call the dual of X, whose underlying group of k-points is isomorphic to
ImϕL. Implicit in the uniqueness of the dual abelian variety is that our construction
should ultimately be independent of the choice of ample L. This is a legitimate concern,
although we sweep it under the rug for our purposes.

But first, if we hope to upgrade ϕL to an isogeny, we must verify that its kernel is
finite.

Lemma 2.12. If L ∈ Pic(X) is ample, then kerϕL is finite.

Proof. Denote Y = (kerϕL)
0 as the connected component of the identity. We will show

dimY = 0. Note L|Y is ample and T ∗
y (L|Y ) ≃ L|Y for all y ∈ Y as Y ⊂ kerϕL.

Denoting pri : Y × Y → Y as the projections, the translation-invariance of L|Y implies
M := m∗L|Y ⊗ pr∗1L|−1

Y ⊗ pr∗2L|−1
Y is trivial on all restrictions Y × {y}, {y} × Y . The

Seesaw Theorem (in the form of Corollary 2.8) then forcesM to be trivial.

Consider the pullback of M along the morphism idY ×(− idY ) : Y → Y × Y . By
definition ofM, we have (idY ×− idY )

∗M = L|Y ⊗ (− idY )
∗L|Y . ButM is trivial, so

the pullback must also be trivial. However, both L|Y and (− idY )
∗L|Y are ample, so

the trivial bundle on Y must be trivial. This is only possible if dimY = 0. □

From this alone, we can offer a construction of the dual abelian variety, thanks to
the general construction of quotient varieties as provided in [Mum74, §7].

Theorem 2.13. Let X be an algebraic variety and G a finite subgroup of Aut(X).
Suppose that for any x ∈ X, the orbit Gx of x is contained in an affine open subset of
X. Then, there is a unique (up to isomorphism) pair (Y, π), where Y is a variety and
π : X → Y a morphism, satisfying the following conditions:

(1) In the category Top, we have Y = G\X and π is the natural projection map.
(2) If π∗(OX)

G is the subsheaf of G-invariants of π∗(OX), then the natural homo-
morphism OY → π∗(OX)

G is an isomorphism.

Furthermore, π is finite, surjective, and separable, and it is étale if G acts freely on
X. This construction is also universal in the sense that any G-invariant morphism
f : X → Z must factor uniquely through (Y, π).

Of course, it is unclear that this quotient is independent of the choice of L, both as a
group and as a variety. For conciseness, we will not properly address this discrepancy.
The important thing for us is that a “dual” abelian variety X∨ of X exists and is
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equipped with a morphism X → X∨, both of which we have constructed after a choice
of ample line bundle.

We give a general impression of how to remove the independence on L. The idea is to
define the dual abelian variety via a representable functor. Informally, the functor which
takes a k-variety T to a family of line bundles over X parametrized by T (equivalently,
a line bundle on X × T with extra conditions) is representable by a k-variety. The
construction in [Mum74, p.74] takes a more direct yet similar approach, where the
representability is reflected in the construction of the Poincaré bundle. Showing that
this construction is independent of any choice of ample line bundle relies on a bijection
(in fact, an equivalence of categories) between coherent OY -modules and coherent G-
sheaves on X, where Y = G\X as in the theorem above. (The precise statement is
[Mum74, Prop. 2].)

An important feature of dualizing is that it also applies to isogenies. If f : X → Y
is an isogeny, then there exists a (unique) isogeny f∨ : Y ∨ → X∨, called the dual
isogeny of f . The construction of the dual isogeny comes from the representability of
the dual abelian variety (relatedly, the universal property of the Poincaré bundle). For
our purposes, we offer the following fact and guarantee:

(1) An isogeny f : X → Y induces by pullback a group homomorphism f ∗ : PicY →
PicX, which by restriction to the degree 0 part gives us a group homomorphism
f ∗ : Pic0 Y → Pic0X.

(2) This map can be enriched to a morphism of abelian varieties f∨ : Y ∨ → X∨.

Remark 2.14. Even more generally, one can construct the relative Picard scheme, which
is again defined by some moduli problem. In this regard, the pullback map f ∗ can really
be seen as a morphism of group schemes, and restricting to the connected component
at the identity gives f∨.

3. Structure of Endomorphism Algebra

Let X be an abelian variety. The concern of this section is to describe the structure
of End0(X) := End(X)⊗Z Q, leading up to the handy Theorem 3.10.

Even in the elliptic curve case, where over Q the most common scenario End0(E) = Q
does not supply us with much information about the elliptic curve, the rare cases
where Q ⊊ End0(E) gives rise to the beautiful theory of complex multiplication. Over
finite fields, which is the primary interest of this exposition, the Frobenius morphism
ensures every elliptic curve has “complex multiplication,” and a close study of the
endomorphism ring ultimately gives the Weil conjectures for elliptic curves. See [Sil09,
§5] for details.

Before we proceed, we state a fundamental result relating the group structure of X
to isogenies out of X. Recall the quotient variety construction from Theorem 2.13.

Theorem 3.1 (Finite Subgroup–Separable Isogeny Correspondence). For an abelian
variety X, there is a bijective correspondence

{finite subgroups K ⊂ X} ←→
{

(isomorphism classes of)
separable isogenies f : X → Y

}
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where K ⊂ X corresponds to f : X → Y = X/K. Here, we say two isogenies f1 : X →
Y1 and f2 : X → Y2 are isomorphic if there exists an isomorphism g : Y1

≃−→ Y2 such
that f2 = g ◦ f1.

Proof. Let K ⊂ X be a finite subgroup. Theorem 2.13 immediately offers that the
natural projection f : X → X/K is a surjective, separable morphism of varieties with
finite kernel. It remains to check X/K is an abelian variety, but one can check the

composite X ×X m−→ X
f−→ X/K factors through (X ×X)/(K ×K) ≃ X/K ×X/K,

so the group law given by m induces a morphism X/K ×X/K → X/K.

Conversely, let g : X → Y be a separable isogeny. By definition, its kernel is a finite
subgroup of X. We check that g is isomorphic to f : X → X/K, which is a separable
isogeny from above, or equivalently that X/K ≃ Y . The universality of the quotient

variety (the last statement of Theorem 2.13) gives us a unique morphismX/K
h−→ Y . By

construction, it is an epimorphism with trivial kernel. At the same time, Zariski’s Main
Theorem [Vak25, Theorem 28.6.2] says that h is finite as it is proper and quasifinite.
We conclude from the fact that a finite morphism with singleton fibers everywhere is
an isomorphism. □

We give a useful application of this result. If an isogeny f : Y → X has kernel of order
n, then ker f ⊆ kernY . But this means nY : Y → Y can factor through X = Y/ ker f ,
hence there exists an isogeny g : X → Y such that g◦f = nY . Note then that f ◦g = nX

as well by the following simple slick computation: for any x ∈ X, we can find some
y ∈ f−1(x), and then (f ◦g)(x) = (f ◦g)(f(y)) = f(g◦f(y)) = f(n ·y) = n ·f(y) = n ·x.
In End0(X), the isogeny nX is clearly invertible. We can interpret the above as

follows: consider the category AbVar0k whose objects are abelian varieties over k and
whose morphisms are given by Mor(X, Y ) := Hom0(X, Y ). Then, isogenous abelian
varieties are isomorphic in AbVar0k. In effect, by linearizing homomorphisms over Q, we
only care about abelian varieties up to isogeny. This is advantageous to us because of
the following theorem.

Theorem 3.2 (Poincare’s complete reducibility). Let X be an abelian variety and
Y ⊂ X be any abelian subvariety. Then, there exists another abelian subvariety Z ⊂ X
such that X is isogenous to Y × Z.

In other words, AbVar0k is a semisimple abelian category, all of whose objects have
finite length.

Proof. Let i : Y ↪→ X the inclusion and i∨ : X∨ → Y ∨ its dual homomorphism.
Moreover, let L be an ample line bundle on X, so ϕL is an isogeny. We define Z to be
the connected component of 0 in ϕ−1

L (ker i∨). We have

dimZ = dimker i∨ ≥ dimX∨ − dimY ∨ = dimX − dimY

where the equalities come from the fact that isogenies preserve dimensions. Further, by
definition z ∈ Z ∩Y if and only if (T ∗

zL⊗L−1)|Y is trivial that is z is in kerϕL|Y . Since
L|Y is ample, ϕL|Y is an isogeny and has finite kernel. Hence, the sum Y ×Z → X has
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finite kernel and it is surjective because

dim(Y × Z) = dimY + dimZ ≥ dimY + dimX − dimY = dimX,

so the two are isogenous. □

Call an abelian variety simple if it has no nonzero abelian subvariety besides itself.
Like with finite-dimensional semisimple representations, we can obtain the following
results.

Corollary 3.3 (Unique Decomposition). An abelian variety X is isogenous to a finite
product

∏
iX

ni
i , where the Xi’s are pairwise non-isogenous simple abelian varieties and

ni ∈ Z>0. The ni’s are uniquely determined, as are the Xi’s up to isogeny.

Corollary 3.4 (Structure of End0(X)). Let X be an abelian variety. If X decomposes
(isogenously) as

∏
iX

ni
i , then

End0(X) =
⊕
i

Mni
(Di),

where Di = End0(Xi) is a finite-dimensional division algebra over Q and Mni
(Di) is

the algebra of ni × ni matrices over Di.

The finite-dimensionality of the Q-division algebras Di is the only subtle detail, but
it is a direct consequence of the following theorem, in conjunction with dimZℓ

TℓX =
2dimX.

Theorem 3.5. Let X, Y be abelian varieties over k, and fix a prime ℓ ̸= char k. The
map

Zℓ ⊗Z Hom(X, Y )→ HomZℓ
(TℓX,TℓY )

induced from f 7→ Tℓf is injective.

We can summarize Corollary 3.4 by Wedderburn’s Theorem as “End0(X) is a finite-
dimensional semisimple algebra over Q.”

The upshot of this structure is that such algebras come equipped with canonical trace
and norm forms, such that all other trace and norm forms arise from the canonical ones.

Definition 3.6 (Trace and Norm Forms). Let A be a finite-dimensional associative
algebra over a field k. A trace form on A is a k-linear map S : A → k such that
S(ab) = S(ba) for any a, b ∈ A. A norm form on A is a non-zero map N : A → k
satisfying N(ab) = N(ba) for any a, b ∈ A and, upon choosing a k-basis {a1, . . . , an} of
A, we have N (

∑n
i=1 xiai) = P (x1, . . . , xn) where P is a polynomial. The last statement

can be reformulated as N being a polynomial function.

One important example of a norm form on End0(X) is the degree. To show it
is a polynomial function, one requires this deep lemma relating degrees and Euler
characteristics.

Lemma 3.7. Let f : X → Y be an isogeny between abelian varieties over k. If
L ∈ PicY is ample, then

χ(f ∗L) = deg(f) · χ(L),
where χ is the Euler characteristic.
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The proof of this requires Grothendieck’s dévissage theorem [GD61, Théorème 3.1.2].
For a complete treatment which implicitly uses dévissage in its argument, see [Mum74,
§12, Theorem 2]. An alternate, more general approach to this is via the Hirzebruch–
Riemann–Roch Theorem. In any case, we use this lemma to show that the degree
function is polynomial.

Proposition 3.8. Let X be a simple abelian variety and d = dimX. Then, the degree
function on End(X) extends to a norm form on End0(X) which has degree 2d as a
(homogeneous) polynomial function.

Proof. The degree function is clearly multiplicative, so we only need to prove the poly-
nomial function statement. By Example 2.6, we know deg n = n2d, hence it only
remains to show that the degree map is a polynomial function. Explicitly, we will show
D(n) = deg(nϕ + ψ) is a polynomial function for any ϕ, ψ ∈ End(X). By the above
lemma, noting that any nonzero endomorphism of simple X must be an isogeny, we
have that for any ample line bundle L on X,

D(n) =
χ((nϕ+ ψ)∗L)

χ(L)
.

The denominator is constant, so we reduce the problem to showing χ((nϕ + ψ)∗L) is
polynomial in n.

Denote Ln := (nϕ + ψ)∗L. We will proceed similarly to the proof of the Theorem
of the Square (2.10), replacing the projections pi with the three morphisms nϕ+ ψ, ϕ,
and ϕ. Applying the Theorem of the Cube to the analogous line bundle

M := Ln+2 ⊗ L−1
n+1 ⊗ L−1

n+1 ⊗ (2ϕ)∗L−1 ⊗ Ln ⊗ ϕ∗L ⊗ ϕ∗L,

we can deduce thatM is in fact trivial, and hence Ln+2⊗L−2
n+1⊗Ln is independent of

n. It follows that there exist line bundlesM1,M2,M3 ∈ PicX such that

Ln =M
n(n−1)

2
1 ⊗Mn

2 ⊗M3.

By the Hirzebruch–Riemann–Roch theorem [Ful98, Corollary 15.2.1], one can show

that χ(Mp(n)
i ), for any polynomial p(n), is a polynomial in n. The theorem also implies

that the Euler characteristic of the tensor product is a polynomial in n, as it is a
polynomial on each component. This completes the proof. □

The next lemma describes the reduced trace and norm forms for finite-dimensional
simple algebras. Upon restriction to its simple factors, one can determine all trace and
norm forms for semisimple Q-algebras like End0(X).

Lemma 3.9 (Canonical Trace/Norm Forms). Let A be a finite-dimensional associative
simple k-algebra for some infinite field k. Let K be the center of A, and suppose it
is a separable field extension over k. There exists a canonical trace form Tr0 of A
over K such that any norm form of A over k must be equal to (NK/k ◦ N0)r for some
r ∈ Z≥0. Likewise, there exists a canonical norm form N0 of A over K such that
any trace form of A over k must be equal to ϕ ◦ Tr0 for some k-linear map ϕ : K → k.
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We now reach the most important result of this section. Attached to the endomor-
phism algebra End0(X) (or, as we will shortly prefer, the Qℓ-algebra Qℓ ⊗Q End0(X))
are two natural norm forms: the degree (Proposition 3.8) and the determinant of the
induced map on TℓX. Note that as polynomial functions, both have degree 2 dimX,
the former via Proposition 3.8 and the latter from rankZℓ

TℓX = 2dimX. The next
theorem asserts that these two norm forms are in fact the same.

Theorem 3.10. Let X be an abelian variety and f ∈ End(X). Fix a prime ℓ ̸= char(k),
and denote Tℓf as the induced endomorphism of TℓX. Then,

deg f = detTℓf.

Proof. We prove it in the case whereX is simple. In the general case, one can decompose
Qℓ ⊗Z End(X) into simple Qℓ-algebras via Corollary 3.4 and apply the proceeding
argument to each simple component. Using notation from Lemma 3.9, denote Nred =
NK/k ◦N0, so any other norm form on Qℓ ⊗Z End(X) must be of the form N r

red.

Denote d = dimX. From the above discussion, we see that both f 7→ deg f and f 7→
detTℓf give rise to norm forms on Qℓ ⊗Z End(X) which have degree 2d as polynomial
functions. Denote the respective norm maps as Ndeg and Ndet, respectively. We know
then that Ndeg = N r1

red and Ndet = N r2
red for some r1, r2 ∈ Z. To show r1 = r2, it suffices

to show that |Ndeg(α)|ℓ = |Ndet(α)|ℓ for any α ∈ Qℓ ⊗Z End(X). By homogeneity and
continuity, it suffices to show the equality just for all α = f ∈ End(X). But this follows
from the string of equalities

| deg f |ℓ = |#ker f |ℓ = lim
n→∞

(#(ker f)[ℓn])−1 = (#cokerTℓf)
−1 = | detTℓf |ℓ.

Thus, deg f = detTℓf when X is simple. The general case follows by comparing the
ℓ-adic valuations of Ndeg and Ndet on each simple factor of Qℓ ⊗Z End(X). □

We may state the theorem in a slightly more practical form, which is the version we
use in the proof of the Riemann Hypothesis (Proposition 5.5).

Corollary 3.11. Adopt the same notation as above. Denote P (T ) := det(T ·idTℓX −Tℓf)
as the characteristic polynomial of Tℓf . Then P (T ) is monic of degree 2 dimX, has
coefficients in Z, and satisfies

deg(n · idX −f) = P (n)

for all n ∈ Z.

Proof. The equality is trivial from the theorem, as well as the fact that P (T ) is monic
of degree 2 dimX. For the integrality of its coefficients, we first note that its coeffi-
cients must all be rational as P (n) ∈ Z for all n ∈ Z. Additionally, we may deduce
from Theorem 3.5 that End(X) is a finite Z-module, and hence f satisfies some monic
polynomial relation with coefficients in Z. Thus, the eigenvalues of Tℓf are algebraic
integers, so all coefficients of P (T ) are also algebraic integers. The conclusion follows
from Q ∩ {algebraic integers} = Z. □
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4. Weil Pairing and Rosati Involution

We want to define a pairing on Tℓ(X) × Tℓ(X∨). To do so, we first define a pairing
on X[ℓn]×X∨[ℓn].

Let λ be an ℓ-torsion point in X∨. We denote by L the line bundle corresponding to
λ and by D the divisor such that L = OX(D). By definition of λ, Lℓ is trivial, hence
ℓD is the divisor of a rational function f . The same holds for ℓ∗XL and we denote by
g the rational function whose divisor is ℓ∗XD. Then, div ℓ∗Xf = ℓ∗XℓD = div gℓ, thus
g(x)ℓ = αf(ℓx) for a constant α ∈ k. Using this last equality, we have for every a ∈ X[ℓ](

g(x)

g(x+ a)

)ℓ

= 1.

So, it make sense to define for a ∈ X[ℓ], λ ∈ X∨[ℓ],

ẽℓ(a, λ) =
g(x)

g(x+ a)
.

Doing the same construction for ℓk, k ≥ 1 we define ẽℓk . Moreover, we can prove that
for any k ≥ 1 and for any a ∈ X[ℓk+1], λ ∈ X∨[ℓk+1],

ẽℓk(ℓa, ℓλ) = ẽℓk+1(a, λ),

so passing to the inverse limit we define the Weil pairing

eℓ : TℓX × TℓX∨ → Zℓ.

This is a Zℓ-bilinear pairing and it is non-degenerate. Moreover, if f : X → Y is
a homomorphism of abelian varieties and Tℓf is the induced morphism on the Tate
modules, Weil pairing satisfies

eℓ(Tℓf(x), y) = eℓ(x, Tℓf
∨(y))

for every x ∈ TℓX, y ∈ TℓX∨.

Weil pairing is a very useful tool in the theory of abelian varieties because we can
also define it as a non-degenerate pairing on TℓX ×TℓX: fix a line bundle L and define
for x, y ∈ TℓX,

eLℓ (x, y) = eℓ(x, TℓϕL(y)).

This is a skew-symmetric non-degenerate pairing.

4.1. Rosati Involution. Our next aim is to define an involution on End0(X). This
involution will be crucial in defining a non-degenerate pairing on End0(X) that we will
use to prove Riemann Hypothesis for the zeta function associated to an abelian variety.
We fix an ample line bundle L on X so that ϕL is an isogeny.

Definition 4.1. The Rosati involution on the algebra End0(X) with respect to L is
′ : End0(X)→ End0(X)

ϕ 7→ ϕ′ = ϕ−1
L ◦ ϕ

∨ ◦ ϕL.

Remark 4.2. The Rosati involution is Q-linear and for every ϕ, ψ ∈ End0(X), it satisfies
(ϕψ)′ = ψ′ϕ′ by property of dual isogeny.
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Lemma 4.3. The Rosati involution is an involution.

Proof. We will use the Weil pairing to prove the lemma. Let x, y ∈ TℓX, ϕ ∈ End0(X)
then

eLℓ (x, ϕ
′y) = eℓ(x, ϕL ◦ ϕ−1

L ◦ ϕ
∨ ◦ ϕLy)

= eℓ(x, ϕ
∨ ◦ ϕL)

= eℓ(ϕx, ϕLy)

= eLℓ (ϕx, y).

This means that ϕ′′ = ϕ as we wanted to prove. □

The Rosati involution is very useful because it allows to define a quadratic form on
End0(X).

Theorem 4.4. Let S be the trace form on End0X induced by the canonical trace forms
on its simple factors. For every non zero ϕ ∈ End0(X), S(ϕϕ′) > 0, thus S defines a
definite positive quadratic form on End0X.

Proof. See [Mum74, Section 21, Theorem 1]. □

5. Proof of Weil Conjectures (1 and 3)

We now deliver our promise. Here, X will be an abelian variety over a finite field Fq

(for q a power of p), and X = SpecFq×SpecFqX is the base change of X to the algebraic
closure of F.
The key player in these proofs will be the (absolute) Frobenius morphism π = πX of

X. We define this now.

Definition 5.1 (Frobenius morphism). The Frobenius morphism on X is the auto-
morphism πX : X → X which is the identity as a map of topological spaces and the
structure sheaf morphism OX → OX given by s 7→ sq. The Frobenius morphism on X
is the automorphism π = πX of X obtained from πX by base extension.

We briefly review the necessary properties of π.

Lemma 5.2. Let X be a variety over Fq. The points on X(Fq) fixed by πn are exactly
the Fqn-rational points X(Fqn).

Proof. We can look locally, so assume X = SpecFq[X1, . . . , Xr]/I is affine. Then πn

induces the morphism Xi 7→ Xi
qn

on the ring of functions, so the geometric point
(x1, . . . , xr) maps to (xq

n

1 , . . . , x
qn

r ) under πn. We have xi = xq
n

i iff xi ∈ Fqn . □

Lemma 5.3. Suppose X has an Fqn-rational point. The endomorphism 1− πn of X is
separable.

Proof. Let x ∈ X(Fqn), which exists by assumption. As 1 = idX induces the identity
on the tangent space at x, it suffices to show πn induces the zero map. We can again
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work locally, in which case the differential of the map Xi 7→ Xi
qn

in characteristic p is
indeed the zero map. □

Remark 5.4. We can show when X is an abelian variety over Fq, then it has an Fq-
rational point. Write π(x) = π(0X) + h(x) for some h ∈ End(X). As π on the tangent
space at x0 is 0, so is h, and hence 1− h induces the identity. In particular, this means
1− h is étale. But by construction, 1− h fixes 0, and it is an easy consequence of the
Rigidity Lemma that any morphism between abelian varieties, seen just as varieties,
which preserves the identity is automatically a group homomorphism. It follows that
1 − h is an endomorphism of X as an abelian variety, and étaleness forces it to be
surjective. Take x′ ∈ X(Fq) such that (1 − h)(x′) = π(0X). Then, we have x′ =
π(0) + h(x′) = π(x′), and we conclude x′ is Fq-rational.

5.1. Rationality of Zeta Function. The proof that Z(X,T ) is a rational function as
specified is a direct consequence of Corollary 3.11 for f = π the Frobenius morphism
for X. Denote ω1, . . . , ω2d the roots of the characteristic polynomial of π and Nn :=
#X(Fqn) as in the statement of the Weil conjectures. Because the fixed points of πn,
equivalently the kernel of 1−πn (which is separable by Lemma 5.3), are the Fqn-rational
points of X by Lemma 5.2, we have the nice equality

Nn = deg(1− πn) =

2g∏
i=1

(1− ωn
i ).

Moreover we define

Pr(T ) =
∏

1≤i1<···<ir≤2d

(T − ωi1 . . . ωir)

for every 0 ≤ r ≤ 2d. Then, Pr(T ) has integer coefficients because they are obtained
inductively from P1(T ) that is the characteristic polynomial of π and has integer coef-
ficients by Corollary 3.11. Finally,

Z(X,T ) = exp

(
∞∑
n=1

Nn
T n

n

)
=

∞∑
m=0

1

m!

(
∞∑
n=1

Nn
T n

n

)m

.

Taking the log and using the fact that − log(1− t) =
∑∞

m=1
tm

m
, we find that

log(Z(X,T )) = log

(
P1(T ) . . . P2d−1(T )

P0(T ) . . . P2d(T )

)
,

as we wanted.

5.2. Riemann Hypothesis. The proof of the Riemann Hypothesis follows from the
following proposition that given an endomorphism α connects the product αα′ with the
absolute value of the roots of the characteristic polynomial of α.

Proposition 5.5. Let X be an abelian variety, ′ be the Rosati involution and α be an
endomorphism of X such that αα′ = a ∈ Z. Denote by ω1, . . . , ω2d the roots of the
characteristic polynomial P of α. Then Q[α] ⊂ EndX is semisimple and |ωi|2 = a for
every i = 1, . . . , 2d.
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Proof. Let P , respectively Q, be the characteristic, respectively minimal, polynomial of
α. Then, Q | P by definition. Moreover, by Corollary 3.11, P is also the characteristic
polynomial of Tlα. But then, Q(ω) is an eigenvalue of TlQ(α) that is the zero map
because Q(α) = 0. Therefore, Q(ω) = 0 and P and Q have the same roots. We restrict
the proof to the roots of Q.

If we restrict the trace form on End0X to a trace form on Q[α], it still defines a
definite positive quadratic form as in Theorem 4.4. Moreover, the Rosati involution
defines an automorphism of Q[α] because α′ = a

α
∈ Q[α].

Q[α] has finite dimension over Q, hence it is an artinian ring. We want to write it as
product of fields and to do so, we have to prove that it does not have any nilpotents.
Let β ∈ Q[α] and denote b = ββ′. Since S(ββ′) > 0, b ̸= 0. Moreover, b′ = b, so b2 ̸= 0
because S(bb′) > 0. Inductively, any power of b is non zero, hence any power of a it
is. This also proves that Q[α] is a semisimple algebra because it is product of simple
algebras.

Denote Q[α] = K1 × · · · × Kr. Since for every β ∈ Q[α], S(ββ′) > 0, the Rosati
involution has to be an automorphism of every Ki. Hence, Ki is totally real with trivial
involution or an imaginary quadratic extension of a totally real field. If we extend every
embedding ρ : Ki ↪→ C to homomorphisms Q[α] → C, then every ω is equal to ρ(α)
for a unique ρ. The fact that it is unique comes from the fact that we are considering
ω as a root of Q. This concludes the proof because ρ(α′) = ρ(α) and

a = ρ(a) = ρ(αα′) = ρ(α)ρ(α) = |ω|2

as we wanted. □

We would like to apply this proposition to the proof of Riemann Hypothesis. Let
L0 a line bundle on X. We apply a base change so that L0 ×SpecFq SpecFqm is an
ample line bundle over X ×SpecFq SpecFqm . With an abuse of notation, we denote
X ×SpecFq SpecFqm by X and qm by q. It remains to prove that ππ′ = q. By definition
of the Rosati involution, this is equivalent to prove that

π∨(ϕL(π(x))) = qϕL(x)

for every x ∈ X. Since

π∨(ϕL(π(x))) = π∗(T ∗
π(x)L ⊗ L−1) = T ∗

xπ
∗L ⊗ π∗L−1

and π∗L = Lq, we find that

π∨(ϕL(π(x))) = (T ∗
xL ⊗ L−1)q

as we wanted. Thus, by Proposition 5.5, we have proved the Riemann Hypothesis for
abelian varieties.
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