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1 Preface

In brief, representation theory approaches abstract algebra via linear algebra. This is
useful because while we do have an extensive understanding of abstract algebra, we
understand linear algebra the best. As Toyesh says, “all of math is attempting to
translate things into linear algebra.”

One might think, though, that this reduction from abstract algebra to linear algebra
is not fruitful: as much as we are more comfortable with linear algebra, this translation
may lose lots of information. The beautiful crux of representation theory is that,
actually, lots of information about the group (resp., ring, module) can be recovered
from its representations. This is not an evident thing at all, but this result is the basis
of the Tannakian philosophy. Tannaka’s Theorem, for instance, allows us to recover a
compact Lie group by its category of representations.

For this handout, we will focus on the representations of finite groups. The assump-
tion of finiteness is quite a strong one and allows us to do a lot of things which we
otherwise cannot afford for infinite groups. One may think this finiteness condition is
too restrictive, but the arguments for representations of finite groups translate well to
those of compact Lie groups: in short, change all summations into integrals, which is
possible by the existence of a Haar measure from compactness.

The study of representations of infinite groups in general is an ongoing topic of re-
search. The representations of Lie groups is rich; we can understand them well through
the study of Lie algebras and their representations.

2 The Fundamentals

We now define a representation.

Definition 2.1 (Representation). Let G be a finite group. A (complex) representa-
tion of G is a pair (V, p), where V' is a vector space over C and p is a group homomor-
phism

p:G— GL(V).

Here, GL(V) is the set of automorphisms of V', i.e., invertible linear operators from V'
to itself.

Remark 2.2. For this handout, we will assume all representations are complex repre-
sentations, although it makes sense to talk about real representations or, more generally,
representations over any field. For instance, Emma Knight’s guest counselor seminar

will be about representations of p-groups over F, for some prime power q = p".

Definition 2.3. The dimension of a representation (V, p) is simply dim¢ V.



Remark 2.4. We additionally study only finite-dimensional representations in this
handout. Infinite-dimensional representations can be handled, and in fact they decom-
pose (whatever that means) in the same way as finite-dimensional representations do
for finite groups, but they are just more annoying to deal with.

Perhaps a more enlightening way of thinking about representations is considering
them as a group action on a vector space. Consider some g € G. The map given by
the action of g is itself a map g- : V — V where v +— ¢ - v. Furthermore, this map has
an inverse, given by the action of g~! since g7 - (gv) = g - (¢~ 'v) = v. This allows us
to interpret the group action G x V' — V' as the group homomorphism G — GL(V)
where, as described, g gets sent to the map v — g - v.

Remark 2.5. There are many ways to notate a representation (V, p):

e Oftentimes, we will only refer to a representation by its vector space V or its
homomorphism p. Other times, V, serves as shorthand notation, where the vector
space V, implicitly comes with a homomorphism p. In any case, it should be
understood that a representation contains both the data of a vector space and a
group homomorphism, even if only one of them is mentioned.

e The automorphism p(g) is often denoted as p,.

e We can also notate a representation by interpreting it as a group action. Thus,
as the notation p(g)(v) is quite clunky, we can write the image of v under p(g) as
simply ¢ - v, or just guv.

When I first learned about representations, they felt very non-intuitive to me. For
instance, I was only familiar with group actions on a set, usually finite, so it was difficult
to imagine a group action on a vector space. Luckily, a (finite-dimensional) vector space
comes with a (finite) set: its basis. The first two examples of representations will be
given by the action on its bases.

Example 2.6 (Permutation Representation). Consider the symmetric group S3. Let V
be a 3-dimensional vector space with basis {ej, ea, e3}. Then, we have a representation

o= (e > ex(s))-

For instance, p(lz)(el + e3) = e + e3. We can similarly define an n-dimensional repre-
sentation of S,,.

Even more generally, given an action of G on a finite set X = {x1,x9,...,2,}, we
can construct an n-dimensional representation V' of G which has basis {e;,,..., €, }.
The basis elements permute based on the group action, namely, g - €,, = %4.,,. For
instance, the group Z/3Z acts on the basis {ej, €2, €3} by a-e; = e;4,, where the indices
are taken modulo 3.



Example 2.7 (Regular Representation). This is a specific case of the permutation
representation when our finite set X is the set G itself, and the action is just left
multiplication. Let G = {¢1,...,g,}. Then, we can construct an n-dimensional repre-
sentation of G which has basis {e,,, ..., e, } and is given by h - e,, = epy,.

Example 2.8 (Trivial Representation). Every group G admits a trivial representa-
tion, where each group element gets sent to the identity map. Technically we can have
this for any vector space V', but we usually refer to the trivial representation specifically
for the dimension-1 case V' = C. The reasons for this will become clear once we talk
about irreducible representations.

Example 2.9 (Alternating Representation). For the symmetric group S,,, we have the
one-dimensional representation alt : S,, — GL(C) ~ C* where alt(c) = sgn(o), the
sign of the permutation o.

Example 2.10 (Adjoint Representation). Let G = GL,(C). We can consider the
vector space V' consisting of all n X n matrices with complex coefficients. For any
matrix g € G, define the functional ¥, : V — V mapping X — ¢gXg¢ . Then, we have
the adjoint representation

Ad: G — GL(V)
g— Y,

This is a very important tool in the representation theory of Lie groups! More generally,
given a Lie group G, we can take the corresponding Lie algebra g = T.G, the tangent
space of G at the identity. This is a vector space, and for every g € G, we have a
functional ¥, : T.G — T,G mapping X + gXg ' as in the G = GL,,(C) case. Then,
we can define the adjoint representation as above. This representation is important
because the differential of Ad at the identity is the adjoint representation of the Lie
algebra g = T.G, which we use to define the Lie bracket on g.

Given two representations, there are two nifty ways to construct a new representa-
tion: the direct sum and the tensor product. We know they exist for vector spaces, but
we are able to define them to still observe the representation structure.

Definition 2.11 (Direct Sum of Representations). Given representations V' and W of
G, we can realize V & W as a representation of G via g - (v ® w) = gv ® gw.

It helps to think in terms of matrices. If (V, p) and (W, o) are our representations,
and we consider p, € GL(V) and o, € GL(W) as matrices, then we can associate

(p® o), with the matrix
{pg : }
0 o4’

where each entry is a block matrix.



Definition 2.12 (Tensor Product of Representations). Letting V, W be representations
of G again, we define the representation V@ W via g - (v ® w) = gv ® gw.

We will also see this tensor product representation through matrices. Consider
the representations (V, p) and (W, o), with dimensions n and m respectively. Suppose
pg = (ri;(g9))i; (after we fix some basis for V') and o, = (s;;(g)):; (after we fix some basis
for W). Then, (p ® o), can be represented by the matrix whose entries are products

Ti1j1(9)8isj5(9). For instance, if p, = [$ ] (with respect to some basis {e1, e2} of V') and
o4 = [é % ﬂ (with respect to some basis {f1, fo, f3} of W), then we have

(p®a)g(er ® fo) = pyler) @ ay(f2)
= (3e1 +2e2) @ (4f1 +5f2 + f3)
=12e; ® f1 + 15e1 ® fo + 3e1 @ f3+
8ea @ f1 4+ 10ex ® fo + 262 ® f3,

which agrees with our general matrix form for the action of g on the tensor product.

We can also take the dual of a representation to produce another representation,
which we now construct.

Example 2.13 (Contragredient/Dual Representation). Let (V) p) be a representation
of G. The contragedient (or less pretentiously, the dual) representation of V' is the
representation (VY pY) such that, for ¢ € V'V,

pL(6)(py(0) = 6(v).
Equivalently, by replacing v with p,*(v), we have the definition py(¢) = ¢ o py-1.

We will now indulge in the two instinctive moves when studying any new mathe-
matical object: 1) study maps between the objects, and 2) find the “simplest” kind of
these objects.

We first study maps between representations. Let (V,p) and (W, o) be two repre-
sentations of G. Then, a map between these representations is a linear map f: V — W
which is G-equivariant. Explicitly, this means f : V' — W satisfies the following com-
mutative diagram for every g € G:

|, v

| |7

WO_—9>W

The map f is an isomorphism if it is invertible, in which case V' and W are isomorphic
as representations. Many of the isomorphisms we know to be true on the level of vector
spaces remain isomorphisms as representations.



Example 2.14 (Hom as Tensor). Let (V,p) and (W, o) be representations of G. As
vector spaces, we know Hom(V, W) ~ V¥V @ W. Given our definitions thus far, we have
an understanding of V'V ® W as a representation. For the left hand side, we define the
group action of G on Hom(V, W) by

g~¢:ago¢op;1.

Note that by definition, G acts trivially on the G-equivariant maps in Hom(V, W). (In
the above commutative diagram, the f on the left side is mapped by the g-action to
the f on the right.)

We now claim that the vector space isomorphism VY @ W ~ Hom(V, W) given by
¢ ®w — (v ¢(v)w) is also an isomorphism of representations. This amounts to
checking that the diagram

\

VWeWw 22 Ve w

| |7

Hom(V, W) —— Hom(V, W)

commutes, which we can do manually. Given some ¢ @ w € VY @ W, we have

flg- (@@ w))(v) = f(¢pop,' @ gw)(v)
= ¢op, ' (v)gw
g- flo@w)(v) =040 f(¢@w)op, ' (v)
= o4(¢ 0 p, " (v)w)
= ¢op, " (v)gw,

so indeed the diagram commutes.

3 Irreducible Representations

Our second mathematical instinct is to obtain some notion of irreducibility. How can
we define an irreducible representation, and can we “decompose” any representation
into irreducibles? One very simple example we can see is the case of the trivial repre-
sentation. For any vector space V', we can define p : G — GL(V) to send everything
to the identity idy. But we could really just see any one-dimensional space of V' to see
this group action in play.

The first step to defining an irreducible representation is defining a subrepresenta-
tion, which will allow us to begin decomposing representations.

Definition 3.1 (Subrepresentation). Let (V, p) be a representation. A subrepresen-
tation W is a subspace of V' which is invariant under the action by G, i.e., every p,
restricts to an automorphism of W C V.



Example 3.2 (Trivial Representation as Subrepresentation). Let G — GL(V) map
every element to idy. Then, any one-dimensional subspace of V' will be the trivial
representation, which we can see as a subrepresentation of V. Another example of the
trivial representation arising as a subrepresentation is for the permutation representa-
tion S, — GL,(C). (Here, the vector space is implicitly C"* with basis {ej,...,e,}.)
The vector e; +e3+ - - - +¢,, is invariant under the whole S,-action, so span(e;+---+e,)
is a trivial subrepresentation.

Example 3.3 (Dimension 2 Subrepresentation of S3). Consider the permutation rep-
resentation of S3, namely the representation C3 which permutes the basis elements
{e1, e2,e3}. Then, one can check that the subspace W = {aje; + ases + azes | a1 +as +
az = 0} is invariant under the Ss-action. Verify for yourself that this subrepresentation
has dimension 2. This is known as the standard representation of S35, which we will
revisit when classifying all irreducible representations of Sj.

The notion of irreducibility for representations can now be expressed in the obvious
way.

Definition 3.4 (Irreducible Representation). A representation V of G is an irre-
ducible representation if there are no proper subrepresentations of V.

Exercise 3.5. Check that the trivial representation is irreducible. Check that the
standard representation of S3, the dimension-2 representation from Example 3.3, is
irreducible as well.

Our ambitions would be fulfilled if we could express every representation as a direct
sum of irreducible representations. Equivalently, for any subrepresentation W C V,
we wish to find a complement W+ of W such that W @ W+ = V and W+ is also

G-invariant, i.e., it is also a subrepresentation.

Exercise 3.6 (Summing Irreducibles). Let 1, = span(e; + e3 + e3) be the trivial
subrepresentation in the permutation representation of Sz, and let W = {aje; + agzes +
ases | a;+as+as = 0} be the standard representation of S3. Convince yourself that the
permutation representation V' is isomorphic to the direct sum representation V, & W.

We must be careful about our choice of complement, though, as it is not true that any
complement of a subrepresentation is also a subrepresentation. For instance, consider
the permutation representation V' = C3 of S3 again, and let V; = span(e; + e5 + e3) be
the trivial subrepresentation. The subspace W’ = span{ey, es} is a complement of Vj,
as {e1 + ey + e3, €1, 3} is a basis of C?, but it is clearly not invariant under S3. On the
other hand, the standard representation is both a complement of V and Ss-invariant.
So the choice of complement matters.

Despite this cautionary message, we are always able to find a complementary sub-
representation.



Theorem 3.7. Let V' be a representation of GG, and let W C V' be a subrepresen-
tation. Then, there exists a subrepresentation W’ C V such that V =W @& W'.

Proof. We will employ a trick that is common when proving results for representation
theory: take something that is not necessarily G-invariant at first, then force it to be
G-invariant, usually by some averaging technique. (In fact, we’ve already seen this in
disguise: for the permutation representation of S, each subspace (¢;) is not Ss-invariant,
but (e; + e + e3) is a subrepresentation.)

Take some projection 7 : V' — W. Its kernel is some complement of W, and in fact,
complements of W are in bijection with projections V' — W. Seeing 7 as an element
of Hom(V, V'), we can now take the average

7’ |G|Zg ZngWopg.

geG

Note that both p, and p;l = pg—1 preserve W by definition of subrepresentation, so
7/ remains a projection onto W and therefore corresponds to a complement of W.

I claim that W’ = ker 7’ is invariant under GG, which would complete the proof. We
only need to show the implication 7'(v) =0 = 7’'(¢-v) = 0. This follows from the
fact that 7’ is G-equivariant, since for any s € G,

M/:p o op;!

|G| Zpspgoﬂ- O Pg-1Ps—1

geG

|G| Zpsgoﬂ- O P(sg)—1
geG

/
=T .

In particular, this yields pson’ = mopg, from which we get 7'(v) =0 = 7'(g-v) =
pg 0 ™ (v) = pg(0) = 0, as desired. O

This proof is nice because not only does it tell us that there exists an invariant
complement, but it also instructs us on how to construct it by taking the average of
the elements in the G-orbit of your original projection.

Corollary 3.8 (Existence of Decomposition into Irreducibles). Every representation V'
can be written as a direct sum of irreducible representations.

Although we are guaranteed the existence of such a decomposition, and we have a
mechanism of computing an invariant complement of an (irreducible) subrepresentation,
the problem of finding an irreducible subrepresentation in the first place persists. Even
worse, we have yet to show that this decomposition is even unique.



We can resolve all of our problems through Schur’s Lemma, which I personally
consider as the most fundamental result in representation theory. Very colloquially,
Schur’s Lemma states that irreducible representations are incompatible with one an-
other. And just like how water and oil can be easily separated because of their chemical
incompatibility, Schur’s Lemma gives us hope that we have a feasible way to isolate
irreducible representations.

Mathematically, Schur’s Lemma tells us that the only non-zero maps existing be-
tween irreducible representations are isomorphisms given by multiplicatino-by-scalar
maps. (We often call such a map as a homothety.)

Theorem 3.9 (Schur’s Lemma). Let (V,p) and (W, o) be two irreducible repre-
sentations of G. Let f € Hom(V, W) be a G-equivariant map. Then,

1. If (V,p) % (W, o), then f = 0.
2. If (V,p) ~ (W,0), then f = \-idy for some scalar A € C.

Proof. The main idea is that the kernel and image of an operator f : V' — W can be
seen not only as subspaces of V' and W, respectively, but also as subrepresentations.

We first prove that ker f is a subrepresentation of V. For any g € G, we have
fopy, =040 f. Thus, if f(v) =0, then f(py(v)) = 0,(f(v)) = 0,(0) = 0, implying
py(v) € ker f as well. Similarly, if w = f(v) for some v € V, then o,(w) = o,(f(v)) =
f(pg(v)), from which we deduce Im f is a subrepresentation of W.

By irreducibility of V', we have either ker f = 0 or ker f = V. The latter gives
f = 0. Irreducibility of W gives Im f = 0 or Im f = W. Again, the former gives f = 0.
Otherwise, we combine ker f = 0 and Im f = W to get that f is an isomorphism
between V' and W.

To prove the last part of (2), we rely on the fact that our representations are over
C. Since C is algebraically closed, we can find some eigenvalue X of f € GL(V). But
then we have that ker(f — A -idy) is a nonzero subrepresentation of V', which forces

f=A-idy on all of V, as desired. 0

Exercise 3.10. The last paragraph omits the check that the map f — A -idy remains
G-equivariant. If you understand the notion of equivariance, this fact should be easily
obtainable.

I hyped up Schur’s Lemma as the most fundamental result in representation theory,
so I need to follow up by demonstrating its benefits.

Theorem 3.11 (Uniqueness of Decomposition into Irreducibles). Any representa-
tion can be written uniquely as a direct sum of irreducible representations, up to
ordering.



Proof. We follow the spirit of the proof of unique prime factorization from the number
theory psets. Suppose V' exhibits two distinct decompositions

vt =Qws”.
( J

Denote f as the isomorphism between the two decompositions. For any irreducible
representation V; C V, the image f(V;) is not only a subrepresentation, but an irre-
ducible one. (Justification: ker f|y, = 0 since f is nonzero and V; is irreducible, so
f(V;) =~ V;.) Suppose f(V;) = W, for some j. Schur’s Lemma then dictates that
Vi ~ W;. We can then conclude by continuing to compare irreducible representations
or via some inductive hypothesis, but in any case, the result follows. O

We have now effectively reduced the study of representations to the study of irre-
ducible representations. Our goal is to classify all irreducible representations of
some finite group G. Different choices for G gives rise to interesting theory of its
own — the counselor seminars alone will cover the cases when G is a symmetric group,
a p-group over a field of characteristic p, and GL,,(F,).

Schur’s Lemma is powerful enough for us to complete the study if irreducible rep-
resentations for abelian groups. In this case, the representations are trivial:

Theorem 3.12 (Irreducible Reps of Abelian are Homotheties). Any irreducible
representation of an abelian group G has dimension one.

Proof. Let (V| p) be an irreducible representation of an abelian G. The crux here is that
the commutativity of G forces each p, to be a homothety, since pypn, = pgr = pPrg = pPrpy-
But any homothety preserves any one-dimensional subspace, so the irreducibility of V'
forces it to be one-dimensional, as desired. O

We have now provided enough setup to introduce a nice motivation for why we care
about representation theory.

The study of Fourier series really comes from representation theory in disguise.
Consider the representation L?(S') of S?, where the group action is given by a - f(2) =
f(az). (Alternately, identifying S' ~ R/Z, we are considering the representation on
R/Z of singly-periodic integrable functions.) Since S* is an abelian group, the irre-
ducible representations are one-dimensional, namely they are (continuous) characters
on S ~ R/Z. One can show using functional analysis that the only such characters are

R//\Z ~ 7 given by ¢(a) = e*™ for some n € Z. A Fourier series is exactly this: it ex-
presses a periodic function as the sum of exponentials, or equivalently of trigonometric
functions (which can be expressed as a sum of exponentials).

In a similar vein, considering the representation L?*(R) of R gives us the study of
Fourier transform. Attempting to do harmonic analysis on matrix groups like GL,(R)
leads to the study of reductive groups, which is a major part in the whole Langlands
program.
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4 Motivating Characters

The classification of all irreducible representations for abelian groups is a great success,
thanks to Schur’s Lemma. However, we will see that life is nowhere near as nice for
non-abelian groups. We demonstrate this by computing the irreducible representations
of the non-abelian group of smallest order: the symmetric group Sj.

Let V' be some representation of S3. We will restrict our action first to the cyclic
group C3 < S5, then observe how transpositions act on V. Because (5 is abelian,
we know that for every v € V| the group C3 acts as a homothety. Even better, the
homothety must be of order 3. Letting w = €>™/? and ¢ = (123), we have o(v) = w'v
for some i € Z/37.

Now let 7 = (12). Note that o and 7 generate Ss, so we just need to understand
the action of 7 on a given v € V. Assuming v is a o-eigenvector with eigenvalue w’ and
using the relation o7 = 702, we get

o(t-v) =7(0? -v) = T(W*v) = W7 (v).

We now proceed with casework. First, suppose that ov = w'v for i # 0. Then, Tv
satisfies o(7v) = w?7(v) from above. Since v, 7v have different o-eigenvalues, they are
linearly independent. However, note that span{v, 7v} is invariant under both ¢ and 7,
so we have found a dimension-2 irreducible representation.

Exercise 4.1. Show that this representation is isomorphic to the standard representa-
tion, Exercise 3.3.

Now suppose ocv = v. We have that either v is linearly dependent or independent
to v. If 7v is linearly dependent to v, then 72 = 1 dictates that either 7v = v or
Tv = —v. If the former is true, then (v) is a trivial representation; the latter gives (v)
as the alternating representation.

Finally, suppose v and 7v are linearly independent. We can show that span{v, v}
decomposes into the trivial and alternating representations. We can see this by noting
v+ T7v and v — Tv are both trivial under o and satisfy

T-(v+7TV) =0+ TV, T-(v—TV)=—(v—TV),

so (v + Tv) gives the trivial representation and (v — 7v) gives the alternating represen-
tation. As we have exhausted all cases, we can conclude that the only irreducible
representations of S3; are the trivial, alternating, and standard representa-
tions.

But if I asked you to find the irreducible representations of S,, for n > 3, then we
seem to be at a loss. Given a representation V of S, the representation of the cyclic
subgroup C,, < S, given by V now introduces n different eigenvalues we need to keep
track of. This seems highly inefficient, if not intractable.
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The glimpse of hope is that the eigenvalues was not only our main crutch to identi-
fying all irreducible representations of S3, but it also tells us how to decompose an
arbitrary representation. More specifically, if U,U’,W are the trivial, alternating,
and standard representations, respectively, then the values (a,b,c) for a representa-
tion V = U% @ U'®® @ W®¢ can be computed from the following values. In the table,
the value corresponding to (g, «) corresponds to the number of linearly independent
g-eigenvectors with eigenvalue .

(0,1) ‘ (o,w) ‘ (o, w?) ‘ (1,1) ‘ (1,—1)
a+b| ¢ | ¢ Ja+c| b+c

So our hope is to track the eigenvalues and their corresponding eigenvectors for any
g-action. This, as we have established, is clunky. But what happens if we took the sum
of the eigenvalues — in other words, what happens if we take the trace of any g-action?
To our great joy, we are able to retain all information from the trace. This motivates
our definition for the character of a representation.

5 Characters

As outlined above, we will consider the trace of every g-action. This gives us a complex-
valued function on (G, which we call our character.

Definition 5.1. Given a representation (V, p) of G, the character of V' is the complex-
valued function yy on G given by

xv(g) = Tr(pg)-

To get a hold of this new definition, entertain yourself with the following exercises.
(There is not much to work with at the moment, so these should basically follow from
the definition.)

Exercise 5.2. Prove the following properties:

xv(e) =dimV, xvig™) = xv(9), xv(ghg™") = xv(h).

Remark 5.3. Note that xy(ghg™!) = xv(h) implies that these characters are invariant
on conjugacy classes. We call such functions as class functions on G. It turns out
that all class functions on G are just characters of some representation of G.

Exercise 5.4. Prove that xyew(9) = xv(9) + xw(9) and xvew(9) = xv(9) - xw(g).

Remark 5.5. I am obligated to make a remark that these characters, despite their
name, are not like the characters in group theory, i.e., group homomorphisms ¢ :
G — C*. The group theory characters are actually just one-dimensional complex
representations of (¢, while characters in representation theory do not exhibit the same
multiplicative structure. As an exercise, verify that for general g,h € G, we do not
necessarily have the equality xv(g)xv(h) = xv(gh).
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Exercise 5.6. Prove that yyv(g) = xv(9).

Exercise 5.7. Let a finite group G act on a finite set X, and let V' be the correspond-
ing permutation representation. (Recall then that dimV = |X|.) What does xv(g)
represent?

So now we have consolidated the information of a representation into this complex-
valued class function on G. How much of a representation are we able to recover from
its character? We will show that any representation can be uniquely determined
by its character. This, in fact, turns out to be not a hard task at all.

Recall that Schur’s Lemma allows us to differentiate irreducible representations from
each other in a very powerful way. Let us harness its power. Schur’s Lemma tells us
that for any two irreducible representations V' and W of G,

&mmmWMQ:{lﬁvgwi
0 ifVEW

Suppose V' ~ W, and consider the character xpom(v,v). All ¢ € Hom(V, V) are just
homotheties ¢ = A, so they are automatically G-equivariant by linearity. This means
that g-¢ = ¢, or more explicitly, seeing Example 2.14, the action is g-¢ = gogpog™! =
g g™t = X = ¢, giving Xpom(v,v) = 1 always. Thus, our average is

—_
~—

1
‘?l Z XHom(V,V) (g) = 1. (

geG

But Example 2.14 gives us the nice isomorphism of representations Hom(V, W) ~
VY @ W. Furthermore, Exercises 5.4 ad 5.6 tells us that xyvew(9) = xv(9) - xw(9).
Thus, we can reinterpret Equation 1 as

é S 9hw(e) = (2)

gelG

1 fVeWw
0 if VoW’

This gives us a recipe for an inner product. Note (Remark 5.3) that characters
are class functions, which form a vector space. Denote C..s(G) as the space of class
functions on G. Define an inner product on C.s(G) by

<%w:éﬁzaﬁw»
geG

It is easy to see that this is bilinear.

Equation 2 now tells us that the irreducible characters are orthonormal to each other
with respect to this inner product. In particular, they are linearly independent.

Corollary 5.8. A representation is uniquely determined by its character.
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Proof. Suppose V = @ V%" and W = P W;Bb" satisfy xy = xw. By Exercise 5.4, we
can decompose the characters as

Xv = ZaiXVm Xw = ijXWJ
i J

But since all the xv;’s, xw,’s are linearly independent, so xy = xw can only be
possible if V; ~ W; and a; = b;, which forces V ~ W, as desired. ]

Remark 5.9. Sometimes, we will use (V, W) as notation for (xv, xw) for convenience.

The inner product also gives us a technique to determine the multiplicity of an
irreducible representation in a given representation. All you have to do is take the
inner product!

Corollary 5.10. Let Vi be an irreducible representation. The inner product (V;,V)
gives the multiplicity of Vi in V.

Proof. Using the same decomposition for V' as in the above proof, we have

Vi, V) =) ai (i, Vi) = ay,

]

where the last equality follows again from Equation 2. m

It is impressive just how much information we can glean from characters alongside
their inner product. This is a testament to how much information is held in the trace
of a linear map and its practical convenience.

The linear independence of the irreducible characters means that there can only be
finitely many irreducible representations for a finite group G.

Corollary 5.11. Let m be the number of conjugacy classes in G. There are at most m
irreducible representations of G.

Remark 5.12. This will immediately be made obsolete by Corollary 5.14, which asserts
equality.

Proof. Let Cy,C5,...,C,, bethe m conjugacy classes of G. Consider the class functions
1 on CZ
fi= :
0 on Cj;«éi

Clearly, these are linearly independent and span all of Cj,ss(G). But we know the
irreducible characters {x;} are linearly independent in C..s(G), so #irreps = #{x;} <
m, as desired. O

We will now show equality holds.

14



Proposition 5.13. The irreducible characters of G' form an orthonormal basis for
the space of class functions C.s(G) on G.

Proof. Let x1,...,Xxn be the irreducible characters of G, and suppose [ € Ceas(G)
satisfies (f, x;) = 0 for all 1 <i < n. We wish to show f =0.

We will employ another averaging trick in order to invoke Schur’s Lemma. Let (V, p)
be an arbitrary representation of G. Consider the endomorphism of V' given by

fo= Zmpg-

geG

We will show that this is G-equivariant, which would force fy to be a homothety.
Let h € G. We can compute

foopn="2_ F(9)pen

geG

= Z thg

geG

= f(9)pnpy

geG

=pno Y f9)p

geG
= pn o fo.

This means fo = A by Schur’s Lemma. We can explicitly compute A via

CTe(fo) 1 - |Gl
A= e = g;f(g)m(g) = 27 (-

By our assumption (f, x;) for all irreducible y;, it follows from bilinearity of the
inner product that A =0, so fo = 0.

Now we consider (V, p) to be the regular representation of G. For any basis element
en of G, we have

0= folew) =Y F(g)pglen) =D F(g)eqn-
geG geG

This can only be possible if f(g) = 0 for all ¢ € G, from which we conclude f =0
as desired. n

Corollary 5.14. The number of irreducible representations of G agrees with the number
of conjugacy classes in G.

15



x | i1 Cy - Oy
Vi a1 Qi - A1m
Vo Qo1 Qag v v Qom
Vm (07751 A2 e Omym

Now that we know exactly how many irreducible representations exist for a group, we
can construct a group’s character table, which gives the values of a given irreducible
character at every conjugacy class. Denoting C1, ..., C,, as the conjugacy classes of G
and V7, ..., V,, as the irreducible representations, we can make the following table:

Denote y; as the character of representation V;. By orthogonality of irreducible
characters, we have for any i # 7,

(Xis Xj) = Z |Ce|vigerje = 0.
=1

In this spirit, define A = (1/|Cj|ai;)i; and B = (v/|Ci|@j;)i;. The orthogonality
condition dictates that ABT = [. Taking the transpose of both sides gives BAT = I,
which gives us orthogonality of the columns. Written explicitly, we have proved the

following proposition using only a simple fact from linear algebra. I find this a really
nice proof!

Proposition 5.15 (Orthogonality of Columns). Let a;; represent the values of the
irreducible characters as above. Then,

i’”‘: - {1 ifi=j
Qg Oy = 2 o
= 0 ifi#j

6 Irreducible Characters of S,

We will now apply our techniques to construct the character table for S5 and Sy, before
tackling S5 in the next section.

But before that, I want to lay out a few more notable facts which can be obtained by
applying our results from the previous section to the regular representation of a group

G.

Proposition 6.1. Fix a finite group G. The regular representation Vx of G' con-
tains all irreducible representations of G, with any irreducible representation V'
having multiplicity dim V.

Proof. Computing the trace on the regular representation is straightforward: letting

16



X r denote the character of Vz, we have

(g) = dimVp = |G| ifg=e
Xr\G) = 0 otherwise -

Using Corollary 5.10, we obtain the multiplicity of any irreducible V; of G in Vi is

1 — 1 — :
(Xis XR) = il ZXi(Q)XR(g) = @Xi(e)‘C” = dimV;,

geG
as desired. O

Corollary 6.2. Let Vi, ..., V, be the irreducible representations of G. Then

n

1G] = Y (dim Vi)

i=1
Proof. This follows directly from the decomposition of Vi via Proposition 6.1. [

Now we are prepared to look at the irreducible representations of S3. For now, we
will take the following fact for granted, as this is not a seminar on combinatorics:

Fact 6.3. The conjugacy classes of S, are determined by the different cycle types, e.g.,
a product of disjoint n;-cycles where ny + - - -+ n, = |S,|.

The crux of the proof is that the conjugate of any (-cycle is still an f-cycle: if
o= (ajay - a) and T € S, then 7o77! = (7(a1) 7(az) - - 7(ay)). This is left as an
exercise for the reader.

Example 6.4. The cycle types of S5 are the 3-cycles, transpositions (product of a 2-
cycle with a 1-cycle), and the identity (product of all 1-cycles). For S,,, the cycle types
are the 4-cycles, the 3-cycles, the product of two disjoint 2-cycles, transpositions, and
the identity. One can observe that the cycle types are determined by partitions of n;
consequently, the number of irreducible representations of .S,, is equal to the number of
partitions of n.

As said above, there are three cycle types of Sz, so there are three irreducible
representations. Call them Vi, Vs, V3. By Corollary 6.2, we have (dim V;)? + (dim V3)? +
(dim V3)? = 6. This is only possible if the dimensions are 1,1,2 in some order. We
know S3 admits the trivial and alternating representations (call U and U’), so we are
left with just an irreducible representation of dimension 2.

Consider the standard representation W from Example 3.3. If it is not irreducible,
then its character must have a nonzero inner product with either the trivial or alter-
nating characters. Let ¢ and 7 be any 3-cycle and transposition, respectively. Simple

17



computations (or rather, realizing the standard representation as the complement of
the trivial representation in the permutation representation) gives

(xw(€)s xw (1), xw (o)) = (xcs(€), xea (7), xex (o) — (xu(e), xu(7), xv (o))
=(3,1,0) — (1,1,1)
= (2,0,-1).

We can now check, using the fact that there are three distinct transpositions and two
distinct 3-cycles,

() = ¢ (olhaw(e) + 3xo () + 2x0@har (o) )
:%(1-2+3-0+2-—1):0,

(xorsar) = 5 (xorTehx(e) + 3o (7) + 2@ ()
:é(1-2+3-—1-0+2-—1):0,

so W is irreducible and we have a character table

x |id (12) (123)

U1l 1 1
vl -1 1
W 2 0 -1

We can do a similar thing for S;. There are five partitions of n = 4, so there are five
different conjugacy classes, given by the representatives id, (12),(123),(12)(34), and
(1234). We start again with the trivial representation and the alternating represen-
tation, which are both guaranteed to be irreducible. We can also test if the standard
representation is irreducible: the character values of the permutation representation on
each conjugacy class, in order listed above, is (4,2, 1,0,0). Subtracting off the character
values for the trivial representation gives us the values (3, 1,0, —1, —1) for the standard
representation W. Taking (xw, xw) gives

1 4
Oowvaxw) =57 (334 () 1143 —1- —1+3. —1-—1) =1,

so indeed W is irreducible.

We use Corollary 6.2 to determine the dimensions of the other two irreducible rep-
resentations. Let the missing dimensions be d; and dy. We require

24 =12+ 12 + 3% + d} + d3,

which is only possible when (d;,ds) = (2,3) in some order. We have a guess for the
other dimension 3 representation: U’ ® W. The character values of this representa-
tion is (3,—1,0,—1,1); note that xpew(g)> = xw(g)? for all ¢ € G, which means
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(Xvew, Xuew) = (Xw, xw) = 1, affirming U’ ® W as irreducible. Our character table
now looks like

x |id (12) (123) (12)(34) (1234)

U 11 1 1 1

U1 -1 1 1 ~1

Vo2

w3 1 0 ~1 ~1
Uew |3 -1 0 ~1 1

The rest can be filled in via the orthogonality of columns (Proposition 5.15). We
will leave this as an exercise to the reader.

It’s great that we’re able to determine all irreducible characters, as any representa-
tion is uniquely determined by its character, but knowing its values doesn’t really tell
us much as to what the representation actually is. We have a strong understanding of
the trivial, sign, and standard representations (U, U’, and W). We can realize U’ @ W
quite concretely from this (as a vector space, it is isomorphic to W, but the action now
takes into account the permutation sign).

For the last irreducible representation V', note the similarity in its character values
with the character values of the standard representation of S3. We can then realize the
representation V' as extending the standard representation of S3 to S, via the projection
Sy — S3, which has kernel isomorphic to the Klein 4-group V;. One can check that the
character values of this representation matches the values in the third row of the table,
once the reader fills it in.

7 S; and other tidbits

Finally, we can do the same for irreducible representations of S;. This time, there are
seven partitions of n = 5. We have as irreducible representations, once again, the trivial
(U), alternating (U’), standard (W), and the tensor U’ @ W. There are three remaining
irreducible representations — call their respective dimensions di, ds, ds. Corollary 6.2
tells us
120=12+ 1P+ 42+ 42+ ds +d5+d5 = di +d;+ d; = 86,

which is only possible when {d;, ds, ds} is {7,6,1} or {6,5,5}. But we have expired all
possible dimension 1 representations (namely, U and U’), so the dimensions must take
on the latter values.

To construct the dimension 6 irreducible representation, we will decompose the
tensor product representation W & W, where W is the standard representation as

before. As a brief interlude, we introduce the following fact that helps motivate this
move:
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Proposition 7.1. Let V' be a faithful representation of G. Then, for every irre-
ducible representation W, there exists some n € N such that W is a subrepresen-
tation of V®".

Proof. There are two super slick proofs of this. The first is from Fulton-Harris, while
the second is attributed to our very own David Speyer. They are basically the same
proof, just worded slightly differently.

Proof 1: We will denote a, = (xw, x}-). Consider the series
z) = Z anz"
n>0

Let the conjugacy classes of G be C',...,C,,. Invoking the definition, we have

1) =Y a2 =3 Gara ) 2

n>0 n>0

= ZZ |Cilxw (Ci)xv (Ci)" 2"
n>0 =1

_ . Cil - xw (Ci)
i—1 1-— Xv(Cg)Z

If f =0, then we require
Z ¢ XW (@) _ dim(W)
—xv(C)z 1 — (dimV)z

C#{e }

But each (1 — xy(C;)z) are irreducible in C[z], and |xv(C;)| < xv(e) = dim V', with
equality if and only if C; = {e} by faithfulness. As none of the denominators on the left
hand side match the denominator on the right hand side, this equality is impossible,
meaning f does not vanish everywhere. It follows that a, # 0 for some n, as desired.

Proof 2: Denote 1 as the trivial representation. It suffices to show W is a subrepre-
sentation of (V @ 1)®™ for some n, as we can use distributivity on (V @ 1)®" and W
must belong in strictly one of the direct summands by irreducibility. We want to show

?
<XW, X(V@1)®n> > 1.

Expanding the left, we want to study

|G| ZXW V@l )®n(g) = |G| ZXW XV( ) + 1)

geG geqG

Like we established above, we have |yv(g)| < xv(e) = dim V' with equality if and
only if g = e by faithfulness. Additionally, |xw(g)| < dim W, with equality iff g = e.
Combining, we determine |xy(g) + 1|* < (1 4+ dim V)™ with equality iff g = e, so for
large enough n, the sum on the right must be positive. The conclusion follows. O]
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Returning back to the case n = 2, we can decompose V ® V into two useful repre-
sentations which are significant linear algebraic subspaces:

VeV =smi(V)e N (V).

Letting V = span{e;};, recall that Sym?*(V) has basis consisting of all w

for i < j, while A? has basis consisting of “““2%®“_ One can see that these are both

subrepresentations. Furthermore, denoting n = dim V| it is easy to compute that

dim Sym?(V) = (";1) dim \'(V) = (Z)

Exercise 7.2. Verify that the characters of Sym?(V) and A*(V) satisfy

Xsym2(v)(9) = % (xv(9)? +xv(9%)
X/\2(v)(9) = % (Xv(9)2 - XV(92)) :

(Just follow the definition and do some simple algebraic manipulations.)

This sets us up nicely: given our standard representation W, we have dim /\2 W =
(;L) = 6, so it is a strong candidate for the irreducible representation with dimension
6. Using the above exercise, we can explicitly compute its character, filled out in the
table below.

X |id (12) (123) (12)(34) (1234) (12345) (12)(345)
U 11 1 1 1 1 1
A I | 1 1 —1 1 —1
w4 2 1 0 0 -1 -1
UeW |4 =2 1 0 0 —1 1
Vi |5

Vo |5

NW [ 6 0 0 —2 0 1 0

Note that if (xv;, xv1) = 1, then (xvrew, Xvren) = 1 since X7, = 1, so we can take
Vo = U ® Vi. Given this, we can invoke the orthogonality of columns (Proposition
5.15) to fill out the rest of the columns. The resulting table looks like this:

x |id (12) (123) (12)(34) (1234) (12345) (12)(345)
U I 1 1 1 1 1 1
U’ 1 -1 1 1 ~1 1 ~1
w42 1 0 0 ~1 ~1
UW |4 =2 1 0 0 —1 1
1% 5 1 -1 1 —1 0 1
UeVv|s -1 -1 1 1 0 -1
NW |6 0 0 —2 0 1 0




Like before, we still don’t have an understanding of V. The way we could access
this representation is through looking at the other component Sym?W of W @ W.
Computing the character of Sym?(W) from Exercise 7.2, the character values in order
of the conjugacy classes in the above table are (10,4,1,0,0,0,1).

We can realize three subrepresentations of Sym?*(W). The first comes from obtaining
the permutation representation C° as a subrepresentation of Sym?(W). Seeing W as
the vector space

5
W:span{Zaiei:a1+a2+a3—|—a4—|—a520},

=1

consider the five elements w; = —be; + Zj ej for 1 < ¢ < 5. It is clear that for o € Ss,
the action is o - w; = wy(;). Then in Sme(W), we have

0 (Wi @ W;) = We(i) @ We(s)-

This means the vector space spanned by the pure tensors w; ® w; is a subrepresentation
isomorphic to the permutation representation of S5. We know we can decompose this
into U®W, so both U, W C Sym? W. Let V be the representation such that Sym? W =
U®W @& V. We can compute dim V = dim Sym? W —dim U —dim W = 10—1—4 = 5.
This gives us a very strong candidate for our dimension-5 irreducible representation.
Indeed, the character of V' takes on values

XV = Xsym?2(w) — XU — XW
= (5717_171a_1a071)
1
= (v, xv) = 5 (152 +10-12 420 (=1)* +15- 1% + 30 - (=1)* +20 - 1?)

120

1
= —.120=1
120 ’

so V is irreducible, and we can complete our character table.

Although this has been all fun and games up to n = 5, one can quickly see that our
current methods do not scale well. The partition numbers are exponential! There are
just too many possibilities.

We won’t go through the general approach to classify irreducible representations of
Sy, but there is a neat combinatorial interpretation which I will briefly describe.

We’ve established a bijection between irreducible representations of S, and parti-
tions of n, with the number of conjugacy classes being the middle-man in this bijection.
We will remove the middle-man, thereby enriching the bijection and using it more than
just determining the number of irreducible representations.

Partitions have a nice pictorial representation in the form of a Young tableau. For
instance the partition 9 =4 4 2 + 2 + 1 corresponds to the following Young tableau:
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1
5
7
9

There is a procedure which allows us to produce an irreducible representation from
each Young tableau; as Young tableaus are equivalent to partitions, this produces all
irreducible representations of .S,,. We will not discuss the procedure here, but it is not
too bad and the interested should check out §4.1-2 of Fulton-Harris.

Here is one nice manifestation of this explicit correspondence. Given a Young
tableau, we can construct another Young tableau by flipping it along its diagonal,
i.e., swapping the rows and columns. For instance, the “conjugate” of the above Young
tableau given by transposing the diagram is the tableau below:

4

1
5
8
9

If V is the irreducible representation associated with a given Young tableau, then
the irreducible representation associated with the conjugate tableau is precisely U' ® V/,
where U’ is the alternating representation. We proved in our computations for Sy that
tensoring by U’ preserves irreducibility, and in each of the examples n = 3,4, 5, exactly
one irreducible representation did not have a “conjugate” irreducible.

Exercise 7.3. For each n = 3,4,5, find the irreducible representation V' without a
conjugate, check that U’ ® V' =V, and determine its corresponding Young tableau.

The Frobenius formula then allows us to explicitly compute the character values
of an irreducible representation associated to a given Young tableau. To state the
formula, we need to set up some variables. Fix a Young tableau T. Let r be the
number of rows in T and let \; denote the number of cells in the i** row of 7. For
1<i<r, define m; =\, +1r —1.

We will also define two multivariate polynomials. Define the power sum Ps(z) =
Py(zy,...,z,) and the discriminant A(z) = A(zy,...,z,) as

Ps(x):fo, Alr)= [ (@i—)

1<i<j<r

(For our purposes, 1 < s < n.) Finally, for any polynomial f(x) = f(z1,...,z,), denote
[f(%)|(a1,....ar) as the coefficient of the 2" - - x%"-term in f.
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Theorem 7.4 (Frobenius Formula). Let C' denote the conjugacy class of permu-
tations in S,, expressible as the disjoint product of d, ¢-cycles for 1 < ¢ < n. Let
x1 be the character of the irreducible representation corresponding to the Young
tableau T'. Using the notation defined above,

xr(C) =

Example 7.5. The irreducible representation \* W of S5 (where W is the standard
representation of Sy) is its own conjugate, and the only Young tableau with 5 cells
which is symmetric across the diagonal is the following L-shape:

11213

We can collect the necessary values:

r=3
(A1, Ao, A3) = (3,1, 1)

(mqy,ma,mg) = (5,2,1)

Let C be the conjugacy class with representative (12)(345). Then, dy = d3 = 1 and
all other d, = 0. The Frobenius formula tells us that

Xpew ((12)(345)) = [(z1 — @) (w1 — w3) (w2 — w3) - (2] + 25 + 23) (2] + 25 + 23)] (5.2,1)

(1 — 22) (21 — 3) (22 — 5153)](0,2,1) + [(z1 — 22) (71 — 23) (72 — 1’3)]2,0,1
(=1(=1)+(=1) =0,

which agrees with the value from our previously computed character table.

Admittedly, this formula is not super nice, and computing the character values even
for small n can be a pain. The formula, however, does give us a very nice way to obtain
the dimension of yr without having to work so hard. The way to do this is by looking
at the “hook lengths” at every cell. Given a cell in a tableau, the hook length at that
cell is the number of cells directly below it plus the number of cells directly to its right,
plus 1 (to include the cell itself). Below is the hook length of each cell for the Young
tableau corresponding to /\2 W for Ss:
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Theorem 7.6 (Hook Length Formula). Let Vi be the irreducible representation
of S,, corresponding to a Young tableau 7. Denote \q,...,\, denote the hook
lengths of the cells in 1. Then,

Example 7.7. Going back to the example for /\2 W (where again W is the standard
representation for S5, so dim W = 4) and using the hook lengths obtained above, we

can compute
4 dim W 2 5!
= =di e ———
<2> < ) ) dim \" W 15 1=

which is true.

8 Transitioning to GLy(F,)

To maintain sanity, we will assume 2 1 gq.

Representations of Lie groups is a large and rich study of its own. It is no surprise,
therefore, that representations of Lie groups over fields of number theoretic interest (in
particular, fields of characteristic p and non-Archimedean local fields) lend themselves
to a very large story that continues to be developed. For instance, the representation
theory of p-adic groups (i.e., the K-points of a reductive group for some p-adic field K)
is a huge area of research.

We will be looking at matrix groups over a finite field F,, specifically the repre-
sentations of GLy(F,). One may think that nothing interesting is happening in this
case, but identifying the representations of GLy(IF,) both is one of the only accessible
examples and gives a glimpse of the more general theory. Although we won’t talk about
SLy(IF,) here, the representation theory of SLy(IF,) is also incredibly rich, so rich in fact
that there’s a whole textbook literally called “Representations of SLy(F,)” by Cédric
Bonnafé.!

Our focus now can be summarized in two questions:
(Q1) What are the irreducible representations of GLy(IF,)?
(Q2) What arithmetic information do they hold? In other words, why do we care?

A good place to start for (Q1) is to determine all conjugacy classes of GLy(F,). These
are determined by the eigenvalues of a given matrix, which satisfy some quadratic poly-
nomial over [F, given by its characteristic polynomial. Let A;, A2 be the two eigenvalues.

IThe first time I heard about this book, I strongly believed that mathematicians had too much free
time on their hands and the book was unimportant. I realize now just how naive I was back then.
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There are four possibilities to consider:
1.)\1:)\2€Fq, 2.)\1#)\261&1, 3.)\17&)\2615‘(12\15‘(1.

The first gives rise to two conjugacy classes, given by the following representatives:

A0 Al
ol Bl
There are (¢—1) conjugacy classes of each type, as A € F o - The second gives us another
“type” of conjugacy class:
A0
[0 /\2} '

Because [)51 AOQ} ~ [’\02 Aol ], the number of such conjugacy classes is equal to (q_l) =

2
(¢=1)(g—2)
5 )

Finally, if neither Ay, A are in [, then they must be in some quadratic extension
since they satisfy some quadratic over F,. Let ¢ € F, be a quadratic non-residue, so
Fpe = Fq[\/g]. Express A\; = a + bV for a,b € F, and b # 0; this forces Ay = a — bV/0.

One can show that

R R

b a 0 a—0V0 Nla_b\@ O }

K —bo
0 a -+ bvo b a |’

so there are [F,| = ¢ choices for a and |F)| /2 = (¢ — 1)/2 choices for b, giving a total
of %(q2 — q) conjugacy classes of this type.

To summarize, we have four “types” of conjugacy classes, described by the following
table:

Type I 1I II1 I\
Representative A0 AL A0 a bl
0 A 0 A 0 X b a
# of conj. classes | ¢ —1 qg—1 %(q —1)(¢—2) %Q(q —1)
Size of class 1 ¢ -1 @ +q ¢ —q

Remark 8.1. For shorthand notation, we will denote the representatives for these
conjugacy classes as

a()) = B g} b\ = B ﬂ A, N) = POI AOJ e, B) = {g 5&9}

As a sanity check, we can check the sum of the sizes of all conjugacy classes is
exactly | GLo(F,)|. We know | GLy(F,)| = (¢* —1)(¢* — q), as there are (¢*> — 1) choices
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for the top row and (¢* — ¢) choices for the bottom to ensure linear independence. We
can compute

(0=1)-1+ (@~ D@~ 1)+ 5(g— g — 2@ +0) + 5ala— Dla’ ~ )

2
=(¢—1) (1 +(* = 1)+ %(q —2)(¢* +q) + %q(f - q))
i—1) (¢ +2(a-2@+ 1) +aa—1))

1) (¢ +ql® —q—1))
1)q(q —1)(g+1)
1)(¢* —q)

q_
q_

q2

= (
= (
= (
= (
as expected.

Exercise 8.2. Verify the “size of class” row.

The number of conjugacy classes is just the sum of the values in the second row,
which is

@-0 (1414 360 240) = (- D+ =4 - 1,

so we are now on the search for ¢> — 1 irreducible representations of GLy(F,).

There are some natural places we can start. For S,,, we liked to start with the
permutation representation, and this gave us the standard representation. Consider the
permutation representation of GLy(F,) on P!(IF,), so the vector space has basis indexed
by the points on P!(FF,). Since the action of GLy(F,) on P!(FF,) is transitive, we have a
trivial subrepresentation given by the sum of the basis elements. Subtracting the trivial
subrepresentation gives another subrepresentation of dimension |P!(F,)| — 1 = ¢. This
is called the Steinberg representation, which we denote as V' or V.

We check if this is irreducible by looking at its character. Denote xpi(r,) as the
character of the permutation representation and yy as the trivial character. Then,
Xv = xpt — Xu.- We will compute the values of all three characters for each conjugacy
class type.

Consider the representatives as in Remark 8.1, beginning with a(\). The points in
PY(F,) can be expressed as [{] for z € F, or [}]. It is easy to see that a(\) fixes all
points. On the other hand, b(\) only fixes [{], while a(A;, \2) fixes only [§] and [9].
Finally, we compute

a B0 |z|  |ax+ [0 a [0 (1] |«

B all|l]l |Br+al’ B al 0] |8’
The point [§] can thus never be fixed as 5 # 0. For the point [{] to be fixed, we
require z(B8z + «) = ax + B0, or equivalently 2 = 0. But we chose 6 as a quadratic
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non-residue in F,, so there are no fixed points. The values for xp1 are now provided,
and we can subtract the trivial character to get yy:

Type I IT IIr Iv

Yo lg+1 1 2 0
o | 11 1 1

xv | ¢ 0 1 -1

Using the table we made before, we can compute (xy, xy). We can compute

> W@vl) = la- 1)+ 12 50— (g - 2)(a + )
g€GL2(Fy)

12 - -9

2
=q(qg—1) (q+ %(q —2)(g+1)+ %Q(q - 1))

=ql¢—De+¢" —q-1)
= (¢ = 1)(¢" — 9) = | GLa(F,)],
so dividing by | GLy(FF,)| on both sides gives 1 = (xv, xv), meaning V is irreducible.

Although it is cool that we found one non-trivial irreducible representation, we need
¢*> — 1 irreducible representations in total, so we need something better.

Although working with G = GL4(F,) straight up is a bit difficult, its subgroups are
easier to deal with. For instance, consider the diagonal subgroup

a 0 y
ro{fr Toaver;).

Remark 8.3. T stands for maximal torus. For a general compact Lie group, the max-
imal torus is the maximal compact connected abelian Lie subgroup. Given a matrix

group like GL,,(K), the maximal torus is just the diagonal subgroup, which is isomor-
phic to (K*)".

We can construct lots of representations of T', albeit they are 1-dimensional: given
two characters x1, x2 : F; = C*, we can define the character xy = x1 ® x2 on T" by

(|6 3]) = w@em

Two other notable subgroups are the unipotent subgroup

o= oen)
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and the Borel subgroup consisting of upper triangular matrices

B:Hg Z} ;a,belﬁ‘;,ceﬁ?q}.

We have B =T x U, as for any [§ ;] € B, we can write

a c¢| |la 0] |1 c/a
0 b |0 b| |0 1|
Furthermore, it is easy to check that U is normal in B (bub™! € B and its diagonal
entries are the products of the diagonal entries of b, u, and b™!, separately), so we can

identify 7'~ B/U. Given this, we can take our character y = y1 ® x2 and extend it to
B by keeping it trivial on U. Explicitly, define x as a character on B by

([ 1)) =@

How can we make the final jump and turn our representation of B into a represen-
tation on all of G? This is doable — we can induce a representation from a subgroup to
the whole group — but it requires some work. It is the focus of the next section.

Before discussing induced representations, we will give a sneak peek of (Q2) by re-
ferring to GLo(R). Somewhere in Hari’s talk notes on automorphic forms, you may be
able to find him considering the representation L?(I'\ GLj) of GLy, where I' C GL,
is some subgroup with finite covolume. By the Peter-Weyl Theorem, this representa-
tion decomposes into unitary irreducible representations, which are somehow related to
modular forms and Maass forms. For instance, one can explicitly associate a cuspidal
eigenform with one of these irreducible representations. These irreducible representa-
tions, fittingly, are called cuspidal representations, and it is clear that they contain
significant arithmetic information.

Our proceeding study of GLo(F,) will produce a class of irreducible representations
which we will also call cuspidal. Although discussing automorphic forms over a fi-
nite field is silly, these cuspidal representations are significant in their own right. For
instance, consider the following neat fact:

Fact 8.4. The number of cuspidal representations of GL,(F,) agrees with the number
of irreducible degree n monic polynomials in F,[X].

The finite field case is interesting because they are closely tied with the local field
case. For instance, there is a way to lift a cuspidal representation of GL,,(F,) to a super-
cuspidal representation of GL,,(K') for some p-adic field K. Studying representations
of GL2(Q,) leads to the study of p-adic modular forms, among other things.
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9 Induced Representations

Fix a (finite) group G and a subgroup H < G. Generally, V' will be a representation of
G and W will be a representation of H unless otherwise specified.

Given a representation V' of GG, we can restrict the G-action to an H-action to
produce a representation of H, which we denote as Resg V. Note that this agrees with
our original V' as vector spaces, it just sees less of the group action.

This is clearly a loss of information. What if we were able to go in the other
direction?” What if, given a representation W of H, we could build up to a representation
of all of G? This is the premise of induced representations.

Definition 9.1 (Induced Representation). Let V' be a representation of G and W C V
a representation of H. We say that V' is the induced representation from H of W
(or V is induced from W, or V is induced from H, based on what is known) if

V—@gw

lg)eG/H
We denote V as Ind$, .

Remark 9.2. Note that this is well-defined/not dependent on choice of coset, as if
g1H = g2 H, then g; = goh for some h € H,so g1 - W =go-h-W = go - W since W is
invariant under h € H.

Example 9.3 (Left Coset Action induced from Trivial). Let C - ey be the trivial
representation on H. Then, the permutation representation V' = (egr)gec/u on the
cosets G/ H is induced from the trivial representation, as

Ve D o= @ en

lgleG/H lgleG/H

Example 9.4 (Inducing Regular Representations). Let V be the regular representa-
tion of H and Vg the same for G. Then, Vi = Indg V. We can see this via

Ind% Vi = @ [g]-@eh:@eg:VG.
[9]

9l€eG/H heH geqG
Exercise 9.5. Show that dimInd% W = [G : H]-dim W and Ind$ Ind% W = Ind% W.

In both instances, the induced representation can be viewed as the “most natural”
way to extend the H-action to all of GG. This property is very nicely described by this
other characterization of the induced representation.

Suppose again V' is a representation of G. We can define the C-algebra
ClGl ={a1g1 + -+ argr | a; € C,g; € G.
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As a C-vector space, all the group elements g; are linearly independent, and multi-
plication is given by the group operation, i.e., g1 - g = g192 and extend linearly. Since
V' is a complex representation, we can extend the G-action to a C|[G]-action, making V'
a C[G]-module.

Take W a representation of H, and suppose W C V for some representation V'
of G. We can give W a natural C[H]-module structure. As C[H] C C[G] and both
are C-algebras, C[G] has an obvious C[H]-module structure. Thus, it makes sense to
upgrade the embedding W < V to a C[G]-module homomorphism C[G] @cim W — V.
When V = Ind% W, this is an isomorphism.

Proposition 9.6. Let V be a representation of G and W a representation of H
such that V' = Indg W. Then, the embedding W < V induces an isomorphism of

G-representations
C[G] Rcm W = V.

Proof. Let R be a set of representatives of G/H, so every g € G can be expressed as
g = rh for unique r € R and h € H. We have maps

ClG] ®c W ~ @TW
reR

rh @ w— r- (hw)

rRWTr-w.

These are indeed inverses of each other because (rh) ® w = r ® (hw) since the tensor
is over C[H]. We can confirm that

dimepy C[G] @cigy W =[G+ H] - dim W = dimgg V,
so the isomorphism is proven. O]

Not only does this demonstrate the “naturality” of the action being extended to
all of GG, but it also guarantees both existence and uniqueness of the induced represen-
tation, which we didn’t have before. Even better, the first definition starts with the
parent representation V' of G and identifies it as the induced representation if it satisfies
the described isomorphism. The tensor product does not require us to begin with a
representation of (G; we can organically construct it starting from H.

We now have a construction of an induced representation, but we know virtually
nothing about it. Our best hope is to somehow relate the induced representation to the
original representation. What would this look like?

Denote Homg(Vi, V2) as the representation of G (or weaker, the vector space) con-
sisting of G-equivariant homomorphisms from V; to V5.
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Proposition 9.7. We have an isomorphism of vector spaces
Hom g (W, Res% V) = Homg (Ind$, W, V).

Furthermore, this is a natural isomorphism.

Remark 9.8. For those following the category theory counselor seminar, you may
notice that this defines an adjoint pair. Explicitly, if we see Res% : Rep(G) — Rep(H)
and Ind% : Rep(H) — Rep(G) as (covariant) functors, then (Ind%,Res$) are adjoint
functors. This is really the adjoint pair (— ®p A, —p) in disguise (where we have a ring
map B — A and —p sees an A-module as a B-module via the ring map), which in turn
is the Tensor-Hom adjunction in disguise.

Proof. The natural isomorphism suggests that the tensor product perspective Indg W =
C[G] ®cia) W is the way to go. I guess I spoiled the punchline in the above remark:
letting B = C[H| and A = CJ|G] with the natural inclusion map C[H] — C|G], the
(—®p A, —p) adjunction tells us immediately our desired result. I will be a little more
explicit, but the below proof is the same as the proof of the invoked adjoint pair for the
specific case B = C[H] and A = C[G]. We have

(CG] @c W)Y ®ciey V
(ellel Qc[H] wY) ®Rciq V

(WY Qc[H] C[GlY) Rciq) V

= WY @ci (CIG]Y ®ciey V)

= Homg) (W, Home (C[G], V),

12

Homgq)(C[G] @cim W, V) G
G

I

12

where the last line follows from using the Tensor-Hom adjunction twice. (This is the
content of Exercises 3.1-3 in the Tensor Product Problem Session notes and Proposition
7.3 in the Category Theory notes.) It now remains to prove Homgeq(C[G],V) =V as
vector spaces, which one can do explicitly. (To give you a start: the forward map is
¢ — ¢(1).) Both are isomorphic as representations of G, and the desired result follows
by restricting the action to H. O]

Corollary 9.9 (Frobenius Reciprocity). We have
dim Hom g (W, Res$, V) = dim Homg(Ind$ W, V),
or equivalently, denoting (V1,Va) = (Xvi, XV ),
(W,Res§; V), = (Indj; W, V) ...

This is basically the best-case scenario for what we could have. In short, if we
want to see if V' C Indg W, we just need to compare W with Resg V. This nontrivial
information about representations of GG is all contained at the level of representations
of H.
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Remark 9.10. (Exercise in disguise) We can obtain Frobenius Reciprocity without
this tensor product slickery by looking at characters from the getgo. I will omit the
proof because it is just manipulating sums, but if you are interested, you should start
by following the definition of the induced representation to deduce

1

_ -1 _ -1
Xmagw(9) = > xw(r g?")——|H| > xwi(s'gs),
reR seG
r—lgreH s~ lgsecH

where R in the first sum is some set of representatives of G/H. (Hint: consider the
direct sum indexed by the left cosets G/H. When does the action by ¢ fix a direct
summand?)

We include one more interpretation of the induced representation. Although we
won’t use this perspective much, I find it useful because (a) it is quite tangible and (b)
it hints towards a potential geometric interpretation.? Let (W, p) be a representation
of H < G. Then, the induced Ind% W can be identified as the vector space of functions

{f:G—=V][flhg)=p(h)f(g) for h € H},

where the G-action is right translation s - f(g) == f(gs).

One way to see this is to realize that although a representation is in general not
isomorphic to its dual, we can assert C[G] = C[G]" as a representation of H. We know
Xcg)y = Xcia]» but xcjg(h) simply counts fixed points of multiplication by & in G,
which is always an integer. Thus, we have equality xcjgv = Xcjq), 50

Indg W = C[G] ®@cim W = cl|a)Y ®ciry W = Home (CIG, W),

which is exactly what is being described with the above characterization.

Recall that we wish to find irreducible representations of GLo(F,). A strong starting
place for us currently is the characters on the Borel subgroup B which are trivial on
the unipotent subgroup. Take such a character y = x; ® Y2, and consider Indg x- Is
this irreducible? If not, how can we decompose this?

2T say this because Bump uses this perspective to state a “geometric” version of Mackey’s Theorem,
which describes the Hom-space between two induced representations. (See Theorem 32.1 in Bump’s
“Lie Groups” textbook.) I had a very exciting conversation with Toyesh, the resident geometer, and
we feel that the induced representation is really describing sections of some vector bundle, and the
double coset business that permeates Mackey theory is trying to describe both the action on the base
space and the action on the fibers (which should describe some connexion). This is not very fleshed
out, but I have been very confused about induced representations for a while and this seems like an
extremely promising lead. Thanks Toyesh for the enlightenment! Additionally, this definition begs for
a cohomological interpretation — indeed, the book on representations of SLa(F,) delves a lot into some
cohomology, and Deligne-Lusztig representations are constructed via ¢-adic cohomology. Of course, I
don’t really know what any of these things are, but they do exist, and I think this definition is a strong
foundation for such a geometric approach.
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The great arsenal that is Frobenius Reciprocity allows us to even have a chance of
answering this question. If we want to compute <Indg X, Indg X> o+ We can just compute
<X, Res% Ind% X> ;- The one obstruction is: what the heck does Res% Ind% y look like?

We will answer this in the general setting (i.e., for general H < G). The answer
may look disgusting at first, but after overcoming the psychological block against double
cosets, it’s very reasonable and in fact quite nice in our example(s) of interest.

Proposition 9.11. Let H, K < G be two subgroups and (W, p) a representation
of H. Let s € K\G/H be a double coset representative. Denote H* = sHs ' N K,
and define the representation (W* = W, p*) of H* by p*(y) = p(s~'ys). Then, we
have an isomorphism of K-representations

Resf Indf; W= @5 Indj, W*.

seK\G/H

Proof. The idea here is that in the decomposition

Ind W= @9 r-W,
reG/H

almost all - W are not subrepresentations, so we want to group these left-coset-indexed
spaces together to form subrepresentations (of K'). Following this objective, let

Vi= P r-w.

reG/H
re KsH

Any left coset representative r € G/H belongs in exactly one double coset KsH;
rewriting our direct sum by indexing with double cosets, we have

ndgw= & Vv
seK\G/H
To arrive at our desired proposition, then, we wish to exhibit the K-representation
isomorphism
P r- W=V Indf W

reG/H
reKsH

The trick now is to rewrite the direct sum indexing on the left. Consider the set
{k-s| ke K}. Every r € G/H satistying r € KsH is equivalent modulo H to an
element in the set, as r € KsH implies r = k,.sh,, so r ~ k,.s. It now suffices to find
all k such that ks ~ s modulo H. But this just implies k € sHs™!, and as k € K by
default, we see that {r € G/H | r € KsH} is in bijection with K/H?®, where for any
r € KsH there exists a unique [k] € K/H?® such that r ~ ks. Thus, we can write

B rw=f k- (sw)

reG/H keK/Hs
reKsH
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The conclusion follows from seeing W* =2 sW via the action-by-s map. O

We can now determine whether an induced representation is irreducible. Since we

are taking induction and restriction between H and G, we are happy to just consider
the K = H case.

Proposition 9.12. Let (W, p) be an irreducible representation of H. Then, Ind$;, W
is irreducible if and only if W is irreducible and <WS,Resgs W> gs = 0 for all
seG—H.

Proof. By Frobenius Reciprocity, we know Indg W is irreducible if and only if
1 = (Indf; W,IndG W), = (W, Resfj Ind§; W), .
Invoking Proposition 9.11 from above, we have

(W,Resf IndG W), = Y (W, Indj. W*)
s€eH\G/H

= Z <Resgs VV, WS>HS )

s€eH\G/H

where the last equality follows from applying Frobenius Reciprocity again.

Note that each of the terms in the sum are non-negative, and for s = e, the inner
product is simply (W, W), > 1 with equality if and only if W is irreducible. In this case,
all other summands must be 0, which gives the second condition in the proposition. [

10 Principal Series Representations of GLy(IF,)

For this discussion, let G = GLy(F,). We return to our objective of finding the ¢? — 1
irreducible representations of G. Our current plan is to start with characters x1, x2 €
[, define x = x1 ® x2 as a character on T" ~ (IE‘qX)Q, then extend it to B =T x U by

making it trivial on U. We now consider the induced representation Indg X, which we
will also denote as Ind%(x1, x2), and ask if it is irreducible.

Theorem 10.1 (Irreducibility of Ind$ x). Let x = (x1, x2) be a character on B as
defined above.

1. If x1 # X2, then Ind y is irreducible.

2. If x1 = xo, then Indg x decomposes into two irreducible representations of
dimension 1 and gq.
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Proof. The one trick we have for determining irreducibility of a representation is com-
puting the inner product <Indg X, Indg X> o We can now invoke Frobenius Reciprocity
and Proposition 9.11 to simplify

<Indg x, Ind X>G = <X7 Res% Ind% X>B

= Z <X,Indgs XS>BS-

seB\G/B

The double cosets B\G/B may be intimidating, but we have an exceptionally nice
understanding of Borel double cosets in a reductive group via the Bruhat decompo-
sition. In general, if G is a connected reductive algebraic group with a Borel subgroup
B and Weyl group W2 then the Bruhat decomposition tells us

G = |_| BwB.

weWw

In the case G = GL,,, the Weyl group turns out to be isomorphic to S,,. This is
great news, particularly in our case, because then there is only one nontrivial double
coset in B\G/ B!

Exercise 10.2. Let s = [ % §], and verify that GLy(F,) = B U BsB.

For the trivial double coset s = I, we have B® = B and x° =
one-dimensional, it is irreducible, so (x, x)z = 1. Meanwhile when s =
compute

ince x is

.S
[ % 4], we can

< [a b ol ¢ O]
0 ¢ b al’
so B* = sBs~ !N B = T. Furthermore, for any diag(a,b) € T, the above computation
tells us _ - _
Ja 0 [0 o}
0 D] 0 a]’

s0 x* (159]) = x ([32]) = x1(b)xa(a), i-e, x* = X2 @ x1. We can now proceed with our

3The very terse explanation: given a reductive group, one can get root data, and the simple
reflections of the root data generate a group called the Weyl group. This is a generalization of the
Lie group setting: given a semisimple Lie algebra, one can find a root system which spans the Lie
algebra and satisfies certain properties, and the simple reflections of these root systems generate the
Weyl group.
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computations:
(Ind§ x, Indf x), = > (x.IndZ x"),,
s€eB\G/B
= <X7 X>B + <X7Ind?(x2 ® Xl)>T
=1+ (Res7 X, X2 ® X1)p
=1+ (1 ®x2, X2 ®x1)
1 -

=1+ ] > xa(@)xa(d)xa(a)xa (b).

a,bGIF',;<

Letting xo = X1 - X2, which is still a character on F, we have
Z x1(a)x2(b)x2 Z Xo(b Z Xo(a
a,beFy beFy acFy

If xo # 1, or equivalently x1 # X2, then the sum of xo(a) as a varies across F) is 0

(explanation: replace a with za for a fixed » € F)). Otherwise, the sum evaluates to
= (g — 1), so the double sum 1s (¢ — = . 'To summarize,

Fx 1 he doubl i 1)2=|T|. T i

<IndB X5 Indg X |T| Z XO Z XO
beF a€Fy
2 ifxi=xe

The proof is done for the y; # xo case. When y; = Y3, the sum of the squares
of the irreducible representations in Indg(xl, X1) is exactly 2, which is only possible if
there are two irreducible components.

Let x = (x1,x1)- We claim that y; o det is a one-dimensional subrepresentation of
Indg X. Indeed, Frobenius Reciprocity once again gives us

(x1 © det, IndF x),, = (ResG(x1 o det), x) ,
= (x10det, x)p

[§ 5]
- ﬁ > alaehl@lo)
g V]en
1
=5 1BI=1

As dimInd% x = [G : B] -dimy = (¢*> — 1)(¢* — q)/(q(q¢ — 1)?) = q + 1, the other
irreducible component in Ind§(x1, y1) must have dimension ¢, and we conclude. ]
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Exercise 10.3. We have produced two irreducible g-dimensional representations of
GLy(F,) in two different ways. One is the Steinberg representation Vg, the comple-
ment of the trivial representation in the permutation representation on P*(F,). The
other is by inducing the trivial character Ind%(1,1) and removing the trivial repre-
sentation. Show that these two are isomorphic representations. Additionally, show
that the dimension-¢q irreducible subrepresentations of Indg(xl, X1) are isomorphic to
(x1 o det) ® V.

Furthermore, one could run the exact same computations as above in greater gen-
erality to show that <Indg()<1,x2),Indg(ul,u2)>G as 0 unless {x1, x2} = {1, u2}, for
which the above proof gives us the nonzero inner product values between induced rep-
resentations of characters on B.

This Mackey theory work has proven far more fruitful in producing irreducible
representations, but it is not sufficient. By the above proof, each Indg(xl,xg) for

X1 # X2 is irreducible. We know ‘Iﬁq;‘ = q — 1 (take a generator of F\ and map it to

some (g — 1)* root of unity), so this gives us (g —1)(¢ — 2) irreducible representations

of dimension ¢ + 1. (We divide by 2 because the order of xi,x2 does not matter.)
These are called the principal series representations. When x; = x», we get a
1-dimensional and g-dimensional irreducible representation, so there are ¢ — 1 of each.

These numbers should feel very very familiar. Compare the following two tables:

Type I II 111 1A%
Representative A0 AL A0 a bl
0 A 0 A 0 Ao b «a
# of conj. classes | g—1 qg—1 %(q —1)(g—2) %Q(q -1)

Representation Type | xj odet | (xp odet) ® Vi, | Ind$(x1, x2) | 772
Dimension 1 q q+1 777
# of Representations | ¢ —1 q—1 s(@—1)(g—2) | 772

So not only is there a bijection of sets between conjugacy classes of GLy(F,) and its
irreducible representations, but there seems to be an explicit correspondence between
the four “types” of conjugacy classes and the four “types” of irreducible representations.
(At least, this seems to be the case for the first three types.) We conjecture that there is
a fourth irreducible representation type, and like how the Type IV conjugacy class comes
from eigenvalues not in IF,, we see that these representations do not come from induced
Borel representations like the other three types. So where do these representations
come from?

Call this fourth type of irreducible representation as cuspidal, following our brief
exposition at the beginning of §8. From our general knowledge on representations of
finite groups, we can determine the missing dimension and number of representations
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for this cuspidal type. The number of conjugacy classes and irreducible representations
must agree, so there should be %q(q — 1) cuspidal representations. Letting d be the
dimension of these cuspidal representations, we also know from Corollary 6.2 that
1 1
|GLa(Fy)| = (¢ = D1+ (¢ = Da* + (g = g = 2)(g + 1)* + 5alg — )*,

Working through the algebra gives you d = ¢ — 1. For completeness, we fill out the
rest of the table:

Type yiodet | (x1odet)® Vi | Ind%(x1,x2) | cuspidal
Dimension 1 q q+1 q—1
#of Reps | ¢—1 ¢—1 3@—1(a-2) [ 3al¢—1)

11 Cuspidal Representations of GLy(F,)

The key tool for Borel induction on the characters to generate the principal series
representations was that all characters were trivial on the unipotent. To obtain the
cuspidal representations, we will now take into account the nontrivial characters on U.
Note that U ~ F, via [ ¥] — u.?

Furthermore, we were only working with characters of Fy, whereas the Type IV
conjugacy classes have eigenvalues in IFZQ. It may make sense, therefore, to consider
characters of FqXQ.

In fact, this is exactly the punchline: there is an explicit correspondence between
characters on quz which are nontrivial on ¥y and the cuspidal representations. We
will now describe the process of going from a character 6 : IFQXQ — C* to a cuspidal
representation .

Definition 11.1 (Regular Character). Let 6 be a character on IFqXQ. We say 6 is regular
if 07 £ 4.

Our correspondence, more precisely, will construct any cuspidal representation from

a regular character on ]quz, and this representation will be unique up to ¢ powers

of the character. Note that our table above says there should be %q(q — 1) cuspidal
= q(q — 1)/2 regular characters, up to the ¢*®

representations, and there are % ‘IF;
power.

We will introduce two new subgroups of G = GLy(F,). First, the center Z = Z(G)

consists of all scalars, i.e.,
a 0
(X

4This nontrivial property on the unipotent seems deep and very important. For instance, I have
seen unipotents play a big part in doing things with automorphic forms, and reductive groups are
defined via the unipotent radical. However, I have yet to really understand why the unipotent is so
important — definitely some food for thought here.
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We can also embed I ; into G by fixing a basis for Fy2 /F, and considering the multiplication-
by-a map, for any a € F;, as an element of GL(F,2) = GLa(F,). Denote the image of
F*, < G as the subgroup R.
q
Fix a non-trivial character of U, call 1. Note that any other character on U ~ IF,

can be written as ¢, : © — (ax) for any a € [, so our choice of ¢ will prove to be
inconsequential.

Let € be a regular character of R ~ F;. We will now twist 6 by ¢ to create a
character 0, defined on ZU given by

o (5 b 3)-oomen

Exercise 11.2. Let 61,0,,...,60; be the distinct regular characters of ]Fqﬁ. Note d =
q(q — 1), as we do not differentiate ¢™ powers. Let a € F,. Verify that the sets
101,025 0ap} and {01,004, ..., 04y,} are the same, and that if 6; = 07, then
0ip = 07, regardless of choice of 1.

Before stating the main result, we provide some quick group theory computations.
Observe that

[GZU]: (q2_1)<q2_q):q2_1

(q—1)q
¢ —1)(¢> — q)

¢ —1

[GiR]Z( =q¢ —q

In particular, dim Inng Op = ¢ —1>¢ —q=dim Ind%@. We claim that in
fact Indg 0 is a subrepresentation of Inng 6y, and the complement subrepresentation
is an irreducible cuspidal representation. This would agree at least with our claimed
dimension for these cuspidals, as (¢> — 1) — (¢* —q) = ¢ — 1.

Theorem 11.3. Let 0 be a regular character of R ~ F;z and 1 a fixed non-trivial
character of U. Then,

1. The induced representation Ind% @ is a subrepresentation of Ind%;; 6.

2. The complement subrepresentation
mp = Ind%,; 6, — Ind% @

is an irreducible representation of G with dimension ¢ — 1.

Proof. We will compute the character of each induced representation explicitly by com-
puting its values on the four types of conjugacy classes, with the help of Remark 9.10.
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Type L.

Type II.

Type III.

Type IV.

Let zy, = [} {] be a representative of such a conjugacy class. Note that z € Z, so
it commutes with everything. Hence, we can compute

Z _ 1G]

_ (@ —1)(q —q)
(¢—1)q

For R, we can do something similar:

= (¢* = DIN).

Z O(A 0N = (¢* — 9)f(N).

SEG

Let 2, = [} 1]. Using the fact that for s = [¢}], we have s7'z}s = [

can compute

A c/a

0,\}7we

1 -
(@) =rzm D, (A
s*lj’esGeZU

—1
|ZU| Z% 2\S)

|ZU| (g —1)q 29

teFy

NS () = -6

teFy

This was a bit more laborious, but thankfully we do not need to do any work for
Xr(24). The reason is that conjugates of elements in R can either only be of Type
I or Type IV, so the sum as in Remark 9.10 is empty.

Any conjugate of an element in either ZU or R will have the same diagonal
elements, so both characters vanish on this class type.

Identify F,2 ~ F,[V/d], and let m(a, 3) = [g id]. No conjugate of m(«, 5) can be
in ZU, as otherwise the characteristic polynomial of m(«, ) would have roots in
F,. On the other hand, we have

XR(m(a,ﬁ))Zﬁ S 0 mle, B)s)
_lmsé%)seR
1

= 5 B+ (00 + V) + 0(a + 5Vd))
= 0(a + Vd) + 0%(a + V).
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We omit the proof of the first part for brevity, but all of the character values are
prov}ded. For the irreducibility of my, we compute Xz, = Xinag, 6, — XmaGe and take
the inner product:

o) = 17 [ (0= 17 S I00P + (62 = 1) 32 0P+ 50 —a) 30 10 + 0%

AeFS AeFy geIFqXQ -Fy

We compute [0(§) + Qq(§)|2 =2+ 07 +0(£79), so

SO+ =2 —q) +2| D oEH) =Y o

geF g €EF AeFy
=2(¢" —q) —2(¢—1) =2(¢ — 1)*,
and substituting appropriately indeed reduces the computation to (xx,, Xr,) = 1. O

Corollary 11.4. If 6, and 6, are reqular characters of R, then my, = my, if and only if
either 01 = 0y or 0 = 03.

Proof. This also follows from the character values and doing the computation directly.
O

Corollary 11.5. Every cuspidal representation comes from a regular character 0.

Proof. This is simply a counting argument: we have %q(q — 1) regular characters as
determined before, and each gives rise to an irreducible g— 1-dimensional representation.
Corollary 6.2 dictates that we can have no more. O]

The correspondence in the GLy(F,) case between conjugacy class types and irre-
ducible representation types, as well as the correspondence between cuspidal represen-
tations and irreducible characters on F,2, suggests that there is something very deep
going on here. I am both limited in terms of my knowledge on these topics and time
available to write these notes, so this will be incredibly terse. However, these are my
general impressions of what lives beyond.

e (Structure on cuspidal representations) We can generalize this Borel induction to
what is known as parabolic induction. The parabolic induction, or in particular
the parabolic subgroup P = M xU where M is the Levi subgroup of block diagonal
matrices, is a bit obscured in the GLy(F,) case because parabolic agrees exactly
with Borel. However, for larger n > 2, parabolic induction is nice because it is
easier to handle than Borel induction, and more importantly, it produces a graded
ring structure on the set of cuspidal representations. To have any ring structure
on the set of cuspidal representations is impressive. Furthermore, this synthetic

42



process is somehow akin to the Eisenstein series for automorphic representations,
although I have no idea of the connection. In any case, it turns out that any
irreducible representation of GL,,(F,) can be found as a subrepresentation of some
parabolic induction of cuspidal representations.

(Lifting to local fields) Given a cuspidal representation of GL,(FF,), we have a way
of lifting it to a cuspidal representation of GL, (K') for some p-adic field K. (Of
course, char F, = p.) One does this by first inflating the cuspidal representation
of GL,(F,) to GL,(Ok), then using some smooth induction to extend to all of
GL,(K).

(Local Langlands Correspondence) Everything seems to be pretty isolated in
the world of reductive groups or groups of Lie type, but the Local Langlands
Correspondence builds a bridge between this automorphic side and Galois the-
ory. More precisely, there exists a correspondence between smooth irreducible
admissible representations of GL,(C) and a certain kind of Galois representa-
tion called Weil-Deligne representations. These are special representations of

the group generated by the preimage of the Frobenius element under the map
Gal(K/K) — Gal(F,/F,) ~ Z.
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12 Representation Theory in characteristic p of p-
groups (Guest Talk)

This is my transcribed notes from the guest counselor seminar by Emma Knight on
July 10, 2024. T missed some stuff at the end, but I hope this conveys the fundamental
idea that there is very little we can do in characteristic p.

For the talk, £ will be a field of characteristic p, GG is a finite group, and V is a
finite-dimensional representation of G.

At the end of Representation Theory I, we established that for any subrepresentation
W C V, we can find a complement subspace Wy of W which is also a subrepresentation.
This involves this “averaging” trick: take some projection 7 : V' — W fixing W, then
consider the new projection my = ﬁ deG pg O T O p;l.

In characteristic p, we now run into some problems. What if p divides |G|? Then we
no longer can divide by |G| in the averaging trick. Can we still ensure a decomposition
into irreducibles in this case?

Let’s take an example, say G = (v |~+? =e¢). Let’s find some representations of
this. We have the trivial representation, which is already irreducible. Consider the
regular representation kP, where 7 - (e1,...,€e,) = (e2,...,€,,e1). This has a trivial
subrepresentation given by the subspace (e; + €2 + --- + ¢,). In characteristic 0, we
could make the subrepresentation {(a,...,a,) | >, a; = 0}. But this is already bad,
since our trivial subrepresentation is contained in this complement. Uh oh.

Let’s do a more baby example. Take p = 2, and define the representation k2 of
G via v - (a,b) = (b,a). How can we get the trivial subrepresentation (a,a) from
this group action? The key here is to consider all eigenvectors of . Since p = 2,
the only eigenvector of 7, up to scaling, is (1,1), which corresponds to the trivial
subrepresentation. So we can’t even decompose this dimension 2 representation.

So how bad is this failure to decompose? Worded differently, this failure to decom-
pose comes from the lack of irreducible representations, so how few irreducible represen-
tations exist? The answer is that everything fails, and only the trivial representation
exists.

Theorem 12.1. Let G be a p-group and V' # 0 a finite-dimensional representation.
Then, V¢ ={v eV |g-v=0v}#0.

This means no matter how many trivial subrepresentations I take away from a
representation, I am still left with trivial subrepresentations. In other words,
Corollary 12.2. The only irreducible representation of G is the trivial one.

Proof. (of theorem) We proceed by induction on % in |G| = p*. When |G| = p, write
G = (y |~ =1). Let V be a representation of GG. In the same spirit as the exposition,
we wish to find eigenvectors of the map v - —.
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We know v?v = v by definition, so (y?—1I)v = 0. This means the minimal polynomial
of v must divide x? — 1. Here is the punch: in characteristic p, we have the amazing
factorization ¥ — 1 = (x — 1), so 1 is the only eigenvalue and so there is some v such
that yv = v. This completes the base case.

Now assume this is true for all groups of order p"~!. Consider a group G of order
p". By Sylow, there exist some subgroup H C G such that |H| = p"~!. Furthermore,
H is normal in GG. Here is a quick sketch: we have a natural action G on G/H. Since
|G/H| = p, this induces a map G — S,. The image must have order dividing p, but
the coset action is nontrivial, so | Im(G)| = p and so H = ker(G — S,) is normal.

By the inductive hypothesis, we know V¥ is nonzero. Let v € VH# and g € G. We
wish to show h(gv) = gv for all h € H. But this is true by normality of H, as we can
write h(gv) = g(h'v) = gv.

This makes V¥ as a G-subrepresentation of V. The action of G on V factors
through G/H, since V* is trivial by the H-action by definition, so there exists some
v € VH such that gv = v for all ¢ € G. This concludes the inductive step. O]

Instead of a p-group, let’s consider a group such as G = GLy(F,). What are the
irreducible representations of GG in characteristic p? Here are a few examples discussed:

e The representation k? gives the map GLy(F,) — GLa(k). This is the standard
representation.

e Besides the trivial representation, one-dimensional representations can arise from
the determinant: g-z = det(g)’x. Note that these are only distinct up to j mod p.

e Recall the two irreducible representations V@V = Sym?(V) @ A*(V). Letting W
be the standard representation (the first bullet point), we can take the symmetric
powers Symi(W). One may be concerned that this produces an infinite family of
irreducible representations, but these symmetric powers stop being irreducible at

1=7p.
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