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1 Introduction

This is the fourth talk of the “Colmez Tsinghua” learning seminar, co-organized with
Zheng Wang. The name refers to the course notes of Colmez from Tsinghua [Col2004].

We initiate the study of p-adic Hodge theory. I will motivate and provide the
constructions for Fontaine’s period rings Bgr, Bur, and B.s; state some of the main
results of p-adic Hodge theory; and define (¢, I')-modules.

Although not evident from this talk, the connection between p-adic Hodge theory
— in other words, the study of p-adic Galois representations — and p-adic L-functions
is beautifully described by Perrin-Riou’s conjectural framework [PR1995]. This will be
discussed in a future talk.

2 p-adic Hodge theory foundations

There are many nice references out there. I was first initiated to these ideas by [F11980],
which is a precursor to [Fon1994]. The standard reference for the “classical” version'
of p-adic Hodge theory seems to be [BC2009]. I am also using my notes from Anna
Cadoret’s M2 course last year, as well as several other nice surveys [Col2019, Niz2020].

2.1 Periods and comparison isomorphisms

The name period ring suggests that discussing periods of varieties (more generally,
motives) is a suitable starting point.

!Meaning before the Fargues-Fontaine curve approach.


https://sites.google.com/view/zhengwangmath/workshop?authuser=0
https://sites.google.com/view/zhengwangmath/home?authuser=0

Periods are encoded in the comparison isomorphisms between the various realiza-
tions of a motive. Let M be a (pure) motive over Q. For the “classical” (archimedean)
notion of a period, we look at the Betti-to-de Rham comparison isomorphism

Mgr ®q@ C= Mp ®q C.

For example, if F is an elliptic curve over Q, then the motive h'(E)(1) comes with the
isomorphism

Hip(E) ®9 C = Hy,(E(C),Q) ®¢ C

sing

o)

where we have implicitly invoked Poincaré duality to view the right-hand side as the
dual to singular homology.

The important thing to note is that one must extend coefficients to C in order for
this isomorphism to work. Extending to C is sufficient because all integrals of the form
f7 w, which we refer to as periods, are valued in C. The fundamental example to keep
in mind is the following elementary exercise from complex analysis

dt
— =2m € C.
Sl

To shift to non-archimedean periods, we replace the Betti realization with the p-
adic étale one. We know motives also come with an étale-to-de Rham comparison
isomorphism

M, ®q, B = Mar ®q B

for some large enough ring B which contains all “p-adic periods.” For X a smooth
proper variety over Q,, this isomorphism translates to

Hi (X xg, Qp, Q) ®g, B = Hip(X) ®q, B.

The ring Bgr, defined in the next subsection, will make the above an isomorphism.

We conclude this subsection with a discussion of what Bgr could look like. At the
least, it should contain a p-adic analogue t of 27i. What should ¢ look like, and in what
space could it live in?

A reasonable guess to the second question is C,, but we will justify that C, is
too small. Note that the archimedean period 27¢ comes from the Betti-to-de Rham
comparison for X = G,,/c (dt/t is a generator of Hjy(G,,c) and S* is a generator of
Hi(G,,c(C),Z)). We know that the above étale-to-de Rham isomorphism should be
Go,-equivariant, and when X = G, q,, we know

Hgt(Gm,@7 Qp) = Qp(1).



As Hig(G,,/Q,) carries no Galois action, we should expect Gg, to act on t via the
cyclotomic character in order for the isomorphism to be Galois-equivariant. In any
case, the Galois action should not be trivial. But the Ax-Sen-Tate Theorem (proved
by Tate in [Tat1970]) guarantees that there are no such elements in C,,.

Theorem 2.1 (AX—SeETate). Let K/Q, be a finite extension, Cr the p-adic completion
of K, and Gx = Gal(K/K). Then,

K, r=0
Cr(r)%x = {O r£0

Another glaring reason why C, would not work as our period ring is that, due
to the ultrametricity of the p-adic absolute value, log is well-defined on C; once we
have chosen a value for logp. In particular, if €, is a p"-th root of unity in C,, then
p"loge, =logl =0, so loge,.

Fontaine’s first attempt of a p-adic analogue of 277 grew from the observation that
den

“n seen as an element in the Z,-module of Kéhler differentials {2 := QO@/Zzﬂ is not
n P

necessarily 0, thereby salvaging the above feature. We describe some properties of this
element to give a sense of the shape of t.

Theorem 2.2. Let (£,), be a compatible system of p"-th roots of unity in Q,.

1. For anyn € N and o € Gg,, we have

de,, den i1 de,, dey,
— =p , o =) =x(0)—,

En En+1 En En

where x 1s the cyclotomic character.

2. Leta:={a € Q,:v,(a) > —1/(p—1)}. Then, for any a € Og, and n € N, the

den

—2 induces an isomorphism
n

map p‘”O@ — Q where p™"a — a
1 Q,/a = Q,

where for any o € Gg, and o € @p,

The takeaway is that ¢ should (1) in some way “linearize” (i.e., a log should appear
somewhere) a compatible system of p™-th roots of unity and (2) have a cyclotomic
Go,-action.



2.2 Period rings

We will construct the rings Beis C By C Bgr and Byp. This will require many
intermediary ring constructions, beginning with Fontaine’s ring R, which we denote by
Og; - ([Col2004, §4] calls it E7.)

Remark 2.3. T know this learning group is based on [Col2004], but frankly I find it hard
to follow. I will instead mainly follow the notation of [Col2019], where the construction
of these rings are much more nicely written. I also think it is nice to recognize the
construction of Fontaine’s R/Colmez’s old E* as one of the simplest examples of tilting.

We begin with
O(Cz = {(ai)ieN ta; € O(Cp/p7 af+1 = ai} .
This is a ring, so we will describe its addition and multiplication laws. For any a =
(a;); € OC;, we can lift each a; to @; € Oc,, then define

ﬁ o . /\pm
a, = lim a,.,, € Oc,.
m—0o0

Note that af is independent of the choice of lifts @;. This procedure (a;); — (a); in
fact defines a bijection of sets between O¢; and sequences (i)i of elements in Oc, such
that y? ; =y, for all i € N. Then, for any a = (a;);, b = (b;); in Oy, we can see a, b
by their lifts to characteristic 0 and define addition and multlphcatlon uniquely by

m

((l + b) hm ( n+m + anrm) ) (ab)gz = agzbgz

m—r

Observe from the addition rule that OQ)) is of characteristic p, and indeed it is
routine to check that the Frobenius map a + a” is a ring endomorphism of (9@

It is furthermore a complete valuation ring for the valuation v’(a) = vp(ao) and if
v’(a) > 0, then C) = Frac(Ogy ) = O [1/a]. The Gg,-action defined component-wise
on OC; extends naturally to (CI;)' We state without proof the following two facts of C;:

1. (C; is an algebraically closed field of characteristic p, complete with respect to the
valuation v” defined above.

2. The Gg,-action on C; induced from that on Og; is continuous.

Now we define the “one ring to rule them all” A;,¢, which is simply the Witt vector
ring of Og;. Recall that the Witt vector ring W (R) of some ring R is the set RY where
addition and multiplication are defined component-wise via the ghost coordinates

Wa(x) = 2t = ZPT$57H7 T = (Ti)ien-



Example 2.4. This construction is good for lifting rings in characteristic p to charac-
teristic 0. The classic example is W(F,) = Z,, or more generally W (F,) = Ok where
K = Qp(pq—1) is the unique unramified extension of Q, with residue field F,.

From its construction, we obtain for free that A;,s is complete with respect to the
p-adic topology and A;.¢/p ~ O(C; )

By definition, an element of Ajn = W(Og; ) can be written uniquely as 3, -q[zn]p"
for some x,, € Og, where [z] = (2,0,0,...) denotes the Teichmiller lift.

Proposition 2.5. The set map
0: A — O(Cp

Z[xn]pn = in,opn-

n>0 n>0

is a Go,-equivariant surjective ring homomorphism.

Proof. The Galois equivariance is obvious since the Galois action happens component-
wise. Multiplication also behaves as expected everywhere, so the only difficult part is
additivity. It suffices to check additivity of # mod p™ for all n € N. (Surjectivity will
be clear once we establish what 6 looks like at finite levels.)

We will show that & mod p" is equal to the composition

W(mn W n
Ane 25 (O, /p) 2 Oc, /p

where 7, is the standard projection OCZ — Og, /p to the n™ component, W(m,) is the
induced map on the corresponding Witt vector rings (since the Witt ring construction
is functorial), W, is the map on W (Oc,/p") defining the n* ghost coordinate, and W,
is the map such that pre-composition with the mod p projection map is W,,. (Checking
that W, factors through W(Oc,/p) is elementary.)

If we view Aj,¢ as elements of the set Ogb, then the map 6 is given by
p
pfn ﬁ n
($0,$1,---)'—>Z T ) P
n>0

Thus, for 0 < r < n, it suffices to show
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Inverting p on both sides of 6 gives us a map (which we also call 0)
0 : Ain[1/p] = Oc,[1/p] =~ C,.
The source ring is not yet so nice — in particular, it is not a complete DVR — but 6
has the convenient property that ker 6 is principal, generated by the element

_ -1
CTEwT

where [¢] is the Teichmiiller lift of some & = (£,)n, € Oy where el =1+#¢ Fora
proof where ¢ is presented slightly different, see [BC2009, Proposition 4.4.3].

Now we can construct a complete DVR with residue field C, by completing A;n¢[1/p]
with respect to (£). Explicitly, define

. 1 .
B, == @Ainf H Jen.

In the previous subsection, we said that the p-adic analogue ¢ of 27i should be the
log of some compatible p"-th roots of unity. Note that

O(le] —1) =e5—1=0,
so [e] =1 € kerf. In particular, we can make sense of the logarithm
—1)"
= tog(le) = Yoy E
n>1

and this is an element of Bj;. Even better, Fontaine [Fon1982] showed that ¢ is a
uniformizer of Bi;. Since G, acts via the cyclotomic character on each &,, we can
deduce o(t) = x(o)t for any 0 € Gg,. So indeed, this ¢ is the appropriate p-adic
analogue of 2.

Definition 2.6 (Bggr). We denote
1
BdR = Bji_R |:¥:| = FI'&C(BIR).
Since ¢ is a uniformizer of BCTR, we have Bgr is a field with a Gg,-action and a Gg,-stable
Z-graded decreasing filtration given by Fil" Baqg = (¢").

From Bggr, we can get Byt easily by just taking the direct sum of the successive
quotients in the filtration of Byr. Succinctly,
Definition 2.7 (Byr). Byr is the Z-graded C,-algebra
Byt = (P Fil" Bar/ Fil""' Bar ~ EH C,(r).
re€Z reZ

where the last isomorphism follows from the fact that ¢ has cyclotomic Gg,-action.
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One way to motivate the construction of B is that it is a subring of Byqr which
comes with a natural Frobenius endomorphism. (This is not the case with the whole
of Bgr, since the Frobenius automorphism of A;.[1/p] does not preserve (£).) We
first take AY.. to be the divided power envelope of Aj.¢, namely the Aj,-subalgebra of
A;¢[1/p] generated by £"/n! for all n € N. Define A to be the p-adic completion of
AO

cris”

Proposition 2.8. We state the following facts about A..s without proof. (Working
with A, as one may expect, is difficult.)

0

1. The natural map Al — Acris 15 injective.

2. A.is is an integral domain.

3. There exists a unique map j : Acis — Blp such that the following diagram
commutes. In addition, it is continuous, Go,-equivariant, and injective.

Al —— Aug[1/p]

l |

J +
Acris — BdR

4. The uniformizer t of B:{R 15 also an element of A .

5. The Frobenius ¢ on Au[1/p] induced from the Frobenius on Oc; acts stably on
AV (and hence on Ays.)

6. The Frobenius ¢ on Aes is injective, and p(t) = pt.

With these facts in hand, we can define the subring B C Bgqr with a Frobenius
action.

Definition 2.9 (B.s). Denote ¢ = log([e]) € Acis C Bz as above. Then, we define
1

Beis = Acris |:_:| .

t

It is a subring of Bgr with a Frobenius endomorphism ¢ extending that of A, so in
particular o(t) = pt.

Finally, we define By, for which we will be even more terse. (We include its con-
struction merely for completeness.)

Definition 2.10 (B,). Let p’ € OCZ be a compatible system of p"-th roots of p, and
let u € Byr be the element given by

uzlog%:z(_%y_l([%]—l)r.



Define Bg; as
By = Busis [U]

Like with B, we tabulate some facts without proof.

Proposition 2.11. By inherits from Bar a Galois action, and we extend the Frobenius
@ on Beuis to By by asserting p(u) = pu. We can also endow By, with a monodromy
operator N = —%, with Beys = ker N. The Galois action commutes with both ¢ and

N, and the latter two satisfy the relation
Ny = ppN.

We conclude this subsection with Fontaine’s “fundamental exact sequence” which
realizes Q, inside B;s (and hence in By):

0 — Q, = B?Z' — Bgr/Fil’Bgg — 0. (1)

cris

2.3 Classification of p-adic representations

If number theory is about studying the group Gg, and groups are studied through their
representation theory, then it makes sense for us to consider representations of Gg.
Even more, L-functions and the general Langlands philosophy suggests that we can
study representations of global Galois groups via those of local Galois groups.

Let K/Q, be a finite extension and Gk its absolute Galois group. We denote
Repr(Gg) as the category of all F-representations of G for any field F'. As geometry
naturally gives us representations over local fields via cohomology, we will take F' = Q,
for some prime /.

When /¢ # p, the incompatibility of the topologies® of G and GL,(Q,) forces the
study of /-adic representations of Gk to be quite nice. By “nice” we mean they are all
potentially semistable, which we first define.

Definition 2.12 (Potentially semistable). Let K/Q, be a finite extension and ¢ # p
primes. An (-adic representation p of Gk is semistable if the inertia subgroup Ik
acts via unipotent operators. It is potentially semistable if there exists some finite
extension K'/K such that p|g,, is semistable.

Remark 2.13. In general, the adjective “potentially” for some property P of a G-
representation p indicates that p satisfies P after restricting to G/ for some finite

K'/K.

Theorem 2.14 (Grothendieck /-adic Monodromy). Every representation in Repg, (G )
18 potentially semistable.

2To illustrate, note there is no continuous homomorphism Q, — Q, for £ # p.



On the flip side, the topologies of G and GL,(Q,) are more similar, so there is no
such immediate nice classification. The study of p-adic representations of G is p-adic
Hodge theory.

The general shape of such study reflects our motivation for Byg in §2.1: after extend-
ing coefficients to a large enough ring (the period rings above), representations coming
from geometry (e.g., étale cohomology) should decompose into better-understood spaces
(e.g., de Rham cohomology). Note an underlying implication here is that we only care
about Galois representations coming from geometry. This may seem restrictive, but it
is actually not so unreasonable. For instance, there is the Fontaine-Mazur conjecture,
which has been proved in some cases.

Conjecture 2.15 (Fontaine-Mazur). Let p : Gg — GL,(Q,) be an irreducible repre-
sentation which is de Rham at p and unramified outside finitely many primes. Then, p
occurs as the twist of some subquotient of the étale cohomology of a smooth projective

variety X/Q.

Remark 2.16. In the n = 2 case, which in fact was the original formulation of the
conjecture [FM1997], if we further suppose p to be odd, then the conjecture predicts
that p is the Galois representation associated to a cuspidal eigenform.

We revisit the étale-to-de Rham comparison theorem to motivate the general for-
malism of Fontaine. For a smooth proper variety over QQ,, we have a Gg,-equivariant
isomorphism

Hi (X xq, @y, Q,) ®g, Bar = Hiz(X/Q,) @g, Bar.

. G
From our construction of B4 above and the Ax-Sen-Tate Theorem, we have Bjz" = Q,,
so taking Galois invariants on both sides gives

(Hi (X xg, @y, Q) ®g, Bar) % = Hin(X/Q,).

The right-hand side is a nice linear algebraic object (a filtered finite-dimensional Q-
vector space). In general, Fontaine’s formalism will compare various types of Galois
representations to different semilinear algebraic objects.

We state Fontaine’s formalism in great generality, but really the case that we care
about will be when G = G, F' = Q,, and B one of the period rings defined above. We
take the following setup:

e (7 is a topological group,
e B is a commutative integral topological ring with a continuous G-action,
e F:=B%CQ,

e F' C FE is some closed subfield,



e Reps(G) is the category of B-representations of G, where
— objects: free B-modules of finite rank with continuous semilinear G-action,
— morphisms: G-equivariant B-module maps.

We want to send an object in Repr(G) to a nice semilinear object. This is done via the

functor

_ _\G
Dy : Repp(G) 2255 Repy (@) 5 Modys,

i.e., D(V) = (B®p V). This space comes equipped with a natural map

ay: B®g Dg(V) - BpV
b® 0+ b,

which in some sense recovers V' from Dg(V).

Definition 2.17 (Regular). We say B is (F, G)-regular if (1) E = BY = Frac(B)®“ and
(2)if 0# b € B and Fb C B is G-stable, then b € B*.

Definition 2.18. Suppose B is (F,G)-regular, in which case «ay is injective for all
V € ReppGG. We say such a V' is a B-admissible representation if it satisfies any one
of the following equivalent conditions:

2. ay is an isomorphism

3. BQrV ~ B in RepzG for some r € N.
We denote RepEG C Rep.G as the full subcategory of B-admissible G-representations.

To ensure that this category is nice and worth talking about:

Proposition 2.19. The (sub)category Rep?(G) is Tannakian, and the functor Dp :
Rep?(G) — Vecty is exact, faithful, and commutes with tensors.

Example 2.20. Take G = Gg,, B = Bgr, and ' = E = BY = Q,. We check that
Bar is (Q,, Gg,)-regular: (1) we just stated £ = B, and (2) any nonzero b € Byg
(regardless of the G-stable line condition) is a unit since Bgg is a field.

As stated before, we will focus on when G = Gk, F' = Q,, and B is one of the
period rings defined in the previous subsection. For any 7 € {HT,dR,cris,st}, it is
known that B, is (Q,, Gk )-regular.

For each 7 above, our functor D, := Dg_ is from Repr(G k) to Vectg,, where
E, = (B,)9%. Restrict D, to Repg, (Gx) == Repg! (Gk). Fontaine’s program identifies
a subcategory C, C Vectg_ such that the functor D, : Rep@p (Gk) — C, is an equivalence
of categories. We describe these C,:
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7 =HT: Cyp = Grad%, objects being finite-dimensional Z-graded K-vector spaces V o
@nGZ V(n)

7 =dR: Cqr = Filk, objects being Z-graded decreasing separated exhaustive filtrations of
finite-dimensional K-vector spaces.

T = cris: Ces = FiIM%, objects being the data (V, ¢, Fil* Vi), where
(a) V is a finite-dimensional Ko-vector space, where Ko = K N Q)"

(b) ¢ : V =V is a o-semilinear automorphism, where o : Ky — K, is a lift of
the Frobenius

(c) Fil* Vi € Filk is a filtration of Vi =V ®, K.
T=st: Cy = Fill\/lgf’N), objects being the data (V, ¢, N, Fil* Vi), where

(a) (V,¢,Fil* Vi) € FiIM%
(b) N :V — V is a Ky-linear nilpotent endomorphism such that Ny = ppN.
Note that Ceris C Cs (take N = 0) and Cs C Cqr (only remember Fil®* V). Equiv-
alently, Repg G C Rep?prGK C Repfipr{GK, which makes sense from the inclusions

B.is € Bs € Bgr. We also have the inclusion Rep%sptGK C Repg;GK, where pst
indicates potentially semistable. By [Ber2002], the reverse inclusion is also true.

Theorem 2.21 (p-adic monodromy). The inclusion Repf)QS;G x C RepﬁinjG K 1S an equiv-
alence of categories.

2.4 (¢,I')-modules

The above classification is nice, but suppose we wanted to detach a bit from the geomet-
ric source of Galois representations and consider all Galois representations. Without
any extra conditions, is there an equivalence of categories between Repg, (Gk) and some
nice category, perhaps of ¢-semilinear objects?

The development of (¢, ')-modules can be seen through the following two remark-
able facts:

1. Let K be a p-adic field and K,/ K an infinitely ramified algebraic extension such
that the Galois group of its Galois closure is a p-adic Lie group. Then,

(a) The theory of norm fields gives a functorial equivalence between the category
of separable algebraic extensions of K., and that of a characteristic p local
field E. Non-canonically, we have E ~ k.. ((t)), where k., is the residue field
of K.

(b) There is a canonical topological isomorphism

Gal(K*? /K..) =~ Gal(E*?/E).

11



2. There is an equivalence of categories between Repr(G g) and a certain category
of étale p-modules, whose objects have a p-semilinear action.

So, in loose terms, a category of semilinear algebraic nature which is equivalent to
Repg, (G'rr) must have (a) a semilinear p-action coming from Gal(K3P/K) and (b) a
I' = Gal(K«/K)-action. This is the essence of (¢, I')-modules. We proceed directly to
the setup:

e Let K/Q, be a finite extension and K., = K(¢%),. Let E be the corresponding
characteristic p local field given by the theory of norm fields.

e Let x : Gk — Z; be the cyclotomic character and denote the kernel by Hp.
Denote £ = E3P; we have Gal(E/E) = H.

e Denote ' = Gal(K,/K) = Gk /Hg.

e Denote A = W(C?) and define the element m = [¢] — 1 € A. It has p-action given
by
p(m) = [P 1= (1+m)P — 1.

The Gg,-action on 7 factors through I'g,.

e Denote Ag, as the closure of Z,[r, 71 in A , or in other words,

= {Zamr:aTEZp,ar%Oasr%—oo}.

reZ

e Define Bg, := Ag,[1/p] and B = A[l /p]. Denote B as the closure of the maximal

unramified extension of Bg, in B, and define A .= BN A. By Ax-Sen-Tate, we
have B#=! = Q, and Bfx = By.

Definition 2.22. A (p,T')-module D over By is a finite-dimensional B g-vector space
equipped with semi-linear actions of ¢ and I'x which commute with each other. An
étale (¢,I')-module D over Bg is one where the linearization ¢*(D) — D is an iso-
morphism.

Theorem 2.23. There is an equivalence of categories between Repg, (Gk) and the cat-
egory of étale (¢, ")-modules over By, where the functors D and V' are given by

D(V) = (B®q, V)"
V(D) = (B®s, D).

12
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