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1 Introduction

This is the fourth talk of the “Colmez Tsinghua” learning seminar, co-organized with
Zheng Wang. The name refers to the course notes of Colmez from Tsinghua [Col2004].

We initiate the study of p-adic Hodge theory. I will motivate and provide the
constructions for Fontaine’s period rings BdR, BHT, and Bcris; state some of the main
results of p-adic Hodge theory; and define (ϕ,Γ)-modules.

Although not evident from this talk, the connection between p-adic Hodge theory
– in other words, the study of p-adic Galois representations – and p-adic L-functions
is beautifully described by Perrin-Riou’s conjectural framework [PR1995]. This will be
discussed in a future talk.

2 p-adic Hodge theory foundations

There are many nice references out there. I was first initiated to these ideas by [FI1980],
which is a precursor to [Fon1994]. The standard reference for the “classical” version1

of p-adic Hodge theory seems to be [BC2009]. I am also using my notes from Anna
Cadoret’s M2 course last year, as well as several other nice surveys [Col2019,Niz2020].

2.1 Periods and comparison isomorphisms

The name period ring suggests that discussing periods of varieties (more generally,
motives) is a suitable starting point.

1Meaning before the Fargues–Fontaine curve approach.
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Periods are encoded in the comparison isomorphisms between the various realiza-
tions of a motive. Let M be a (pure) motive over Q. For the “classical” (archimedean)
notion of a period, we look at the Betti-to-de Rham comparison isomorphism

MdR ⊗Q C ∼= MB ⊗Q C.

For example, if E is an elliptic curve over Q, then the motive h1(E)(1) comes with the
isomorphism

H1
dR(E)⊗Q C ∼−→ H1

sing(E(C),Q)⊗Q C

ω 7→
(
γ 7→

ˆ
γ

ω

)
,

where we have implicitly invoked Poincaré duality to view the right-hand side as the
dual to singular homology.

The important thing to note is that one must extend coefficients to C in order for
this isomorphism to work. Extending to C is sufficient because all integrals of the form´
γ
ω, which we refer to as periods, are valued in C. The fundamental example to keep

in mind is the following elementary exercise from complex analysis

ˆ
S1

dt

t
= 2πi ∈ C.

To shift to non-archimedean periods, we replace the Betti realization with the p-
adic étale one. We know motives also come with an étale-to-de Rham comparison
isomorphism

Mp ⊗Qp B
∼= MdR ⊗Q B

for some large enough ring B which contains all “p-adic periods.” For X a smooth
proper variety over Qp, this isomorphism translates to

H i
ét(X ×Qp Qp,Qp)⊗Qp B

∼−→ H i
dR(X)⊗Qp B.

The ring BdR, defined in the next subsection, will make the above an isomorphism.

We conclude this subsection with a discussion of what BdR could look like. At the
least, it should contain a p-adic analogue t of 2πi. What should t look like, and in what
space could it live in?

A reasonable guess to the second question is Cp, but we will justify that Cp is
too small. Note that the archimedean period 2πi comes from the Betti-to-de Rham
comparison for X = Gm/C (dt/t is a generator of H1

dR(Gm,C) and S1 is a generator of
H1(Gm,C(C),Z)). We know that the above étale-to-de Rham isomorphism should be
GQp-equivariant, and when X = Gm,Qp , we know

H1
ét(Gm,Qp ,Qp) ' Qp(1).
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As H1
dR(Gm/Qp) carries no Galois action, we should expect GQp to act on t via the

cyclotomic character in order for the isomorphism to be Galois-equivariant. In any
case, the Galois action should not be trivial. But the Ax-Sen-Tate Theorem (proved
by Tate in [Tat1970]) guarantees that there are no such elements in Cp.

Theorem 2.1 (Ax-Sen-Tate). Let K/Qp be a finite extension, CK the p-adic completion
of K, and GK = Gal(K/K). Then,

CK(r)GK =

{
K, r = 0

0, r 6= 0.

Another glaring reason why Cp would not work as our period ring is that, due
to the ultrametricity of the p-adic absolute value, log is well-defined on C×p once we
have chosen a value for log p. In particular, if εn is a pn-th root of unity in Cp, then
pn log εn = log 1 = 0, so log εn.

Fontaine’s first attempt of a p-adic analogue of 2πi grew from the observation that
dεn
εn

, seen as an element in the Zp-module of Kähler differentials Ω := ΩOQp/Zp
, is not

necessarily 0, thereby salvaging the above feature. We describe some properties of this
element to give a sense of the shape of t.

Theorem 2.2. Let (εn)n be a compatible system of pn-th roots of unity in Qp.

1. For any n ∈ N and σ ∈ GQp, we have

dεn
εn

= p
dεn+1

εn+1

, σ

(
dεn
εn

)
= χ(σ)

dεn
εn

,

where χ is the cyclotomic character.

2. Let a := {a ∈ Qp : vp(a) ≥ −1/(p − 1)}. Then, for any a ∈ OQp and n ∈ N, the

map p−nOQp → Ω where p−na 7→ adεn
εn

induces an isomorphism

ι : Qp/a
∼−→ Ω,

where for any σ ∈ GQp and α ∈ Qp,

σ(ι(α)) = χ(σ)ι(σ(α)).

The takeaway is that t should (1) in some way “linearize” (i.e., a log should appear
somewhere) a compatible system of pn-th roots of unity and (2) have a cyclotomic
GQp-action.
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2.2 Period rings

We will construct the rings Bcris ⊂ Bst ⊂ BdR and BHT. This will require many
intermediary ring constructions, beginning with Fontaine’s ring R, which we denote by
OC[p . ([Col2004, §4] calls it Ẽ+.)

Remark 2.3. I know this learning group is based on [Col2004], but frankly I find it hard
to follow. I will instead mainly follow the notation of [Col2019], where the construction
of these rings are much more nicely written. I also think it is nice to recognize the
construction of Fontaine’s R/Colmez’s old Ẽ+ as one of the simplest examples of tilting.

We begin with
OC[p :=

{
(ai)i∈N : ai ∈ OCp/p, a

p
i+1 = ai

}
.

This is a ring, so we will describe its addition and multiplication laws. For any a =
(ai)i ∈ OC[p , we can lift each ai to âi ∈ OCp , then define

a]n := lim
m→∞

âp
m

n+m ∈ OCp .

Note that a]n is independent of the choice of lifts âi. This procedure (ai)i 7→ (a]i)i in
fact defines a bijection of sets between OC[p and sequences (yi)i of elements in OCp such

that ypi+1 = yi for all i ∈ N. Then, for any a = (ai)i, b = (bj)j in OC[p , we can see a, b
by their lifts to characteristic 0 and define addition and multiplication uniquely by

(a+ b)]n = lim
m→∞

(a]n+m + b]n+m)p
m

, (ab)]n = a]nb
]
n.

Observe from the addition rule that OC[p is of characteristic p, and indeed it is
routine to check that the Frobenius map a 7→ ap is a ring endomorphism of OC[p .

It is furthermore a complete valuation ring for the valuation v[(a) := vp(a
]
0), and if

v[(a) > 0, then C[
p := Frac(OC[p) = OC[p [1/a]. The GQp-action defined component-wise

on OC[p extends naturally to C[
p. We state without proof the following two facts of C[

p:

1. C[
p is an algebraically closed field of characteristic p, complete with respect to the

valuation v[ defined above.

2. The GQp-action on C[
p induced from that on OC[p is continuous.

Now we define the “one ring to rule them all” Ainf , which is simply the Witt vector
ring of OC[p . Recall that the Witt vector ring W (R) of some ring R is the set RN where
addition and multiplication are defined component-wise via the ghost coordinates

Wn(x) = x(n) :=
n∑
r=0

prxp
n−r

r , x = (xi)i∈N.
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Example 2.4. This construction is good for lifting rings in characteristic p to charac-
teristic 0. The classic example is W (Fp) = Zp, or more generally W (Fq) = OK where
K = Qp(µq−1) is the unique unramified extension of Qp with residue field Fq.

From its construction, we obtain for free that Ainf is complete with respect to the
p-adic topology and Ainf/p ' OC[p .

By definition, an element of Ainf := W (OC[p) can be written uniquely as
∑

n≥0[xn]pn

for some xn ∈ OC[p where [x] = (x, 0, 0, . . . ) denotes the Teichmüller lift.

Proposition 2.5. The set map

θ : Ainf → OCp∑
n≥0

[xn]pn 7→
∑
n≥0

x]n,0p
n.

is a GQp-equivariant surjective ring homomorphism.

Proof. The Galois equivariance is obvious since the Galois action happens component-
wise. Multiplication also behaves as expected everywhere, so the only difficult part is
additivity. It suffices to check additivity of θ mod pn for all n ∈ N. (Surjectivity will
be clear once we establish what θ looks like at finite levels.)

We will show that θ mod pn is equal to the composition

Ainf
W (πn)−−−−→ W (OCp/p)

Wn−−→ OCp/p
n

where πn is the standard projection OC[p → OCp/p to the nth component, W (πn) is the

induced map on the corresponding Witt vector rings (since the Witt ring construction
is functorial), Wn is the map on W (OCp/p

n) defining the nth ghost coordinate, and W n

is the map such that pre-composition with the mod p projection map is Wn. (Checking
that Wn factors through W (OCp/p) is elementary.)

If we view Ainf as elements of the set ON
C[p

, then the map θ is given by

(x0, x1, . . . ) 7→
∑
n≥0

(
xp
−n

n

)]
0
· pn.

Thus, for 0 ≤ r < n, it suffices to show(
xp
−r

r

)]
0
≡ xp

n−r

r,n (mod pn−r).

But this simply follows from(
xp
−r

r

)]
0

=
(
xp
−r

r

)]pn−r
n

≡ xp
n−r

r,n (mod pn−r),

where the last congruence follows from x]r,n ≡ xr,n (mod p).
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Inverting p on both sides of θ gives us a map (which we also call θ)

θ : Ainf [1/p]→ OCp [1/p] ' Cp.

The source ring is not yet so nice – in particular, it is not a complete DVR – but θ
has the convenient property that ker θ is principal, generated by the element

ξ :=
[ε]− 1

[ε1/p]− 1
,

where [ε] is the Teichmüller lift of some ε = (εn)n ∈ OC[p where ε]0 = 1 6= ε]1. For a

proof where ξ is presented slightly different, see [BC2009, Proposition 4.4.3].

Now we can construct a complete DVR with residue field Cp by completing Ainf [1/p]
with respect to (ξ). Explicitly, define

B+
dR := lim←−

n

Ainf

[
1

p

]
/ξn.

In the previous subsection, we said that the p-adic analogue t of 2πi should be the
log of some compatible pn-th roots of unity. Note that

θ([ε]− 1) = ε]0 − 1 = 0,

so [ε]− 1 ∈ ker θ. In particular, we can make sense of the logarithm

t := log([ε]) =
∑
n≥1

(−1)n+1 ([ε]− 1)n

n
,

and this is an element of B+
dR. Even better, Fontaine [Fon1982] showed that t is a

uniformizer of B+
dR. Since GQp acts via the cyclotomic character on each εn, we can

deduce σ(t) = χ(σ)t for any σ ∈ GQp . So indeed, this t is the appropriate p-adic
analogue of 2πi.

Definition 2.6 (BdR). We denote

BdR = B+
dR

[
1

t

]
= Frac(B+

dR).

Since t is a uniformizer of B+
dR, we have BdR is a field with a GQp-action and a GQp-stable

Z-graded decreasing filtration given by Filr BdR = (tr).

From BdR, we can get BHT easily by just taking the direct sum of the successive
quotients in the filtration of BdR. Succinctly,

Definition 2.7 (BHT). BHT is the Z-graded Cp-algebra

BHT :=
⊕
r∈Z

Filr BdR/Filr+1 BdR '
⊕
r∈Z

Cp(r),

where the last isomorphism follows from the fact that t has cyclotomic GQp-action.
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One way to motivate the construction of Bcris is that it is a subring of BdR which
comes with a natural Frobenius endomorphism. (This is not the case with the whole
of BdR, since the Frobenius automorphism of Ainf [1/p] does not preserve (ξ).) We
first take A0

cris to be the divided power envelope of Ainf , namely the Ainf-subalgebra of
Ainf [1/p] generated by ξn/n! for all n ∈ N. Define Acris to be the p-adic completion of
A0

cris.

Proposition 2.8. We state the following facts about Acris without proof. (Working
with Acris, as one may expect, is difficult.)

1. The natural map A0
cris → Acris is injective.

2. Acris is an integral domain.

3. There exists a unique map j : Acris → B+
dR such that the following diagram

commutes. In addition, it is continuous, GQp-equivariant, and injective.

A0
cris Ainf [1/p]

Acris B+
dR

j

4. The uniformizer t of B+
dR is also an element of Acris.

5. The Frobenius ϕ on Ainf [1/p] induced from the Frobenius on OC[p acts stably on

A0
cris (and hence on Acris.)

6. The Frobenius ϕ on Acris is injective, and ϕ(t) = pt.

With these facts in hand, we can define the subring Bcris ⊂ BdR with a Frobenius
action.

Definition 2.9 (Bcris). Denote t = log([ε]) ∈ Acris ⊂ B+
dR as above. Then, we define

Bcris := Acris

[
1

t

]
.

It is a subring of BdR with a Frobenius endomorphism ϕ extending that of Acris, so in
particular ϕ(t) = pt.

Finally, we define Bst, for which we will be even more terse. (We include its con-
struction merely for completeness.)

Definition 2.10 (Bst). Let p[ ∈ OC[p be a compatible system of pn-th roots of p, and
let u ∈ BdR be the element given by

u = log
[p[]

p
=
∑
r≥1

(−1)r−1

r

(
[p[]

p
− 1

)r
.
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Define Bst as
Bst := Bcris[u].

Like with Bcris, we tabulate some facts without proof.

Proposition 2.11. Bst inherits from BdR a Galois action, and we extend the Frobenius
ϕ on Bcris to Bst by asserting ϕ(u) = pu. We can also endow Bst with a monodromy
operator N = − d

du
, with Bcris = kerN . The Galois action commutes with both ϕ and

N , and the latter two satisfy the relation

Nϕ = pϕN.

We conclude this subsection with Fontaine’s “fundamental exact sequence” which
realizes Qp inside Bcris (and hence in Bst):

0→ Qp → Bϕ=1
cris → BdR/Fil0 BdR → 0. (1)

2.3 Classification of p-adic representations

If number theory is about studying the group GQ, and groups are studied through their
representation theory, then it makes sense for us to consider representations of GQ.
Even more, L-functions and the general Langlands philosophy suggests that we can
study representations of global Galois groups via those of local Galois groups.

Let K/Qp be a finite extension and GK its absolute Galois group. We denote
RepF (GK) as the category of all F -representations of GK for any field F . As geometry
naturally gives us representations over local fields via cohomology, we will take F = Q`

for some prime `.

When ` 6= p, the incompatibility of the topologies2 of GK and GLn(Q`) forces the
study of `-adic representations of GK to be quite nice. By “nice” we mean they are all
potentially semistable, which we first define.

Definition 2.12 (Potentially semistable). Let K/Qp be a finite extension and ` 6= p
primes. An `-adic representation ρ of GK is semistable if the inertia subgroup IK
acts via unipotent operators. It is potentially semistable if there exists some finite
extension K ′/K such that ρ|GK′ is semistable.

Remark 2.13. In general, the adjective “potentially” for some property P of a GK-
representation ρ indicates that ρ satisfies P after restricting to GK′ for some finite
K ′/K.

Theorem 2.14 (Grothendieck `-adic Monodromy). Every representation in RepQ`(GK)
is potentially semistable.

2To illustrate, note there is no continuous homomorphism Qp → Q` for ` 6= p.

8



On the flip side, the topologies of GK and GLn(Qp) are more similar, so there is no
such immediate nice classification. The study of p-adic representations of GK is p-adic
Hodge theory.

The general shape of such study reflects our motivation for BdR in §2.1: after extend-
ing coefficients to a large enough ring (the period rings above), representations coming
from geometry (e.g., étale cohomology) should decompose into better-understood spaces
(e.g., de Rham cohomology). Note an underlying implication here is that we only care
about Galois representations coming from geometry. This may seem restrictive, but it
is actually not so unreasonable. For instance, there is the Fontaine–Mazur conjecture,
which has been proved in some cases.

Conjecture 2.15 (Fontaine–Mazur). Let ρ : GQ → GLn(Qp) be an irreducible repre-
sentation which is de Rham at p and unramified outside finitely many primes. Then, ρ
occurs as the twist of some subquotient of the étale cohomology of a smooth projective
variety X/Q.

Remark 2.16. In the n = 2 case, which in fact was the original formulation of the
conjecture [FM1997], if we further suppose ρ to be odd, then the conjecture predicts
that ρ is the Galois representation associated to a cuspidal eigenform.

We revisit the étale-to-de Rham comparison theorem to motivate the general for-
malism of Fontaine. For a smooth proper variety over Qp, we have a GQp-equivariant
isomorphism

H i
ét(X ×Qp Qp,Qp)⊗Qp BdR

∼−→ H i
dR(X/Qp)⊗Qp BdR.

From our construction of BdR above and the Ax-Sen-Tate Theorem, we have B
GQp
dR = Qp,

so taking Galois invariants on both sides gives(
H i

ét(X ×Qp Qp,Qp)⊗Qp BdR

)GQp ∼−→ H i
dR(X/Qp).

The right-hand side is a nice linear algebraic object (a filtered finite-dimensional Qp-
vector space). In general, Fontaine’s formalism will compare various types of Galois
representations to different semilinear algebraic objects.

We state Fontaine’s formalism in great generality, but really the case that we care
about will be when G = GK , F = Qp, and B one of the period rings defined above. We
take the following setup:

• G is a topological group,

• B is a commutative integral topological ring with a continuous G-action,

• E := BG ⊂ G,

• F ⊂ E is some closed subfield,
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• RepB(G) is the category of B-representations of G, where

– objects: free B-modules of finite rank with continuous semilinear G-action,

– morphisms: G-equivariant B-module maps.

We want to send an object in RepF (G) to a nice semilinear object. This is done via the
functor

DB : RepF (G)
B⊗F (−)−−−−−→ RepB(G)

(−)G−−−→ ModE,

i.e., DB(V ) := (B ⊗F V )G. This space comes equipped with a natural map

αV : B ⊗E DB(V )→ B ⊗F V
b⊗ δ 7→ bδ,

which in some sense recovers V from DB(V ).

Definition 2.17 (Regular). We say B is (F,G)-regular if (1) E = BG = Frac(B)G and
(2) if 0 6= b ∈ B and Fb ⊂ B is G-stable, then b ∈ B×.

Definition 2.18. Suppose B is (F,G)-regular, in which case αV is injective for all
V ∈ RepFG. We say such a V is a B-admissible representation if it satisfies any one
of the following equivalent conditions:

1. dimE DB(V ) = dimF (V )

2. αV is an isomorphism

3. B ⊗F V ' B⊕r in RepBG for some r ∈ N.

We denote RepBFG ⊂ RepFG as the full subcategory of B-admissible G-representations.

To ensure that this category is nice and worth talking about:

Proposition 2.19. The (sub)category RepBF (G) is Tannakian, and the functor DB :
RepBF (G)→ VectE is exact, faithful, and commutes with tensors.

Example 2.20. Take G = GQp , B = BdR, and F = E = BG = Qp. We check that
BdR is (Qp, GQp)-regular: (1) we just stated E = BG, and (2) any nonzero b ∈ BdR

(regardless of the G-stable line condition) is a unit since BdR is a field.

As stated before, we will focus on when G = GK , F = Qp, and B is one of the
period rings defined in the previous subsection. For any τ ∈ {HT, dR, cris, st}, it is
known that Bτ is (Qp, GK)-regular.

For each τ above, our functor Dτ := DBτ is from RepQp(GK) to VectEτ , where

Eτ := (Bτ )
GK . Restrict Dτ to RepτQp(GK) := RepBτQp (GK). Fontaine’s program identifies

a subcategory Cτ ⊂ VectEτ such that the functor Dτ : RepτQp(GK)→ Cτ is an equivalence
of categories. We describe these Cτ :
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τ = HT: CHT = GradZK , objects being finite-dimensional Z-graded K-vector spaces V '⊕
n∈Z V

(n).

τ = dR: CdR = FilK , objects being Z-graded decreasing separated exhaustive filtrations of
finite-dimensional K-vector spaces.

τ = cris: Ccris = FilMϕ
K , objects being the data (V, ϕ,Fil• VK), where

(a) V is a finite-dimensional K0-vector space, where K0 = K ∩Qur
p

(b) ϕ : V
∼−→ V is a σ-semilinear automorphism, where σ : K0 → K0 is a lift of

the Frobenius

(c) Fil• VK ∈ FilK is a filtration of VK := V ⊗K0 K.

τ = st: Cst = FilM
(ϕ,N)
K , objects being the data (V, ϕ,N,Fil• VK), where

(a) (V, ϕ,Fil• VK) ∈ FilMϕ
K

(b) N : V → V is a K0-linear nilpotent endomorphism such that Nϕ = pϕN .

Note that Ccris ⊂ Cst (take N = 0) and Cst ⊂ CdR (only remember Fil• VK). Equiv-
alently, Repcris

Qp GK ⊂ Repst
QpGK ⊂ RepdR

QpGK , which makes sense from the inclusions

Bcris ⊂ Bst ⊂ BdR. We also have the inclusion Reppst
QpGK ⊂ RepdR

QpGK , where pst
indicates potentially semistable. By [Ber2002], the reverse inclusion is also true.

Theorem 2.21 (p-adic monodromy). The inclusion Reppst
QpGK ⊂ RepdR

QpGK is an equiv-
alence of categories.

2.4 (ϕ,Γ)-modules

The above classification is nice, but suppose we wanted to detach a bit from the geomet-
ric source of Galois representations and consider all Galois representations. Without
any extra conditions, is there an equivalence of categories between RepQp(GK) and some
nice category, perhaps of ϕ-semilinear objects?

The development of (ϕ,Γ)-modules can be seen through the following two remark-
able facts:

1. Let K be a p-adic field and K∞/K an infinitely ramified algebraic extension such
that the Galois group of its Galois closure is a p-adic Lie group. Then,

(a) The theory of norm fields gives a functorial equivalence between the category
of separable algebraic extensions of K∞ and that of a characteristic p local
field E. Non-canonically, we have E ' k∞((t)), where k∞ is the residue field
of K∞.

(b) There is a canonical topological isomorphism

Gal(Ksep
∞ /K∞) ' Gal(Esep/E).
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2. There is an equivalence of categories between RepQp(GE) and a certain category
of étale ϕ-modules, whose objects have a ϕ-semilinear action.

So, in loose terms, a category of semilinear algebraic nature which is equivalent to
RepQp(GK) must have (a) a semilinear ϕ-action coming from Gal(Ksep

∞ /K∞) and (b) a
Γ = Gal(K∞/K)-action. This is the essence of (ϕ,Γ)-modules. We proceed directly to
the setup:

• Let K/Qp be a finite extension and K∞ = K(ε]n)n. Let E be the corresponding
characteristic p local field given by the theory of norm fields.

• Let χ : GK → Z×p be the cyclotomic character and denote the kernel by HK .
Denote E = Esep

K ; we have Gal(E/EK) = HK .

• Denote ΓK := Gal(K∞/K) = GK/HK .

• Denote Ã = W (C[
p) and define the element π = [ε]−1 ∈ Ã. It has ϕ-action given

by
ϕ(π) = [ε]p − 1 = (1 + π)p − 1.

The GQp-action on π factors through ΓQp .

• Denote AQp as the closure of Zp[π, π−1] in Ã , or in other words,

AQp :=

{∑
r∈Z

arπ
r : ar ∈ Zp, ar → 0 as r → −∞

}
.

• Define BQp := AQp [1/p] and B̃ := Ã[1/p]. Denote B as the closure of the maximal

unramified extension of BQp in B̃, and define A := B ∩ Ã. By Ax-Sen-Tate, we
have Bϕ=1 = Qp and BHK = BK .

Definition 2.22. A (ϕ,Γ)-module D over BK is a finite-dimensional BK-vector space
equipped with semi-linear actions of ϕ and ΓK which commute with each other. An
étale (ϕ,Γ)-module D over BK is one where the linearization ϕ∗(D) → D is an iso-
morphism.

Theorem 2.23. There is an equivalence of categories between RepQp(GK) and the cat-
egory of étale (ϕ,Γ)-modules over BK, where the functors D and V are given by

D(V ) = (B⊗Qp V )HK

V (D) = (B⊗BK D)ϕ=1.
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