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1. Set-Up

Throughout, we fix a congruence subgroup Γ, meaning a subgroup of SL2(Q) such
that (Γ : Γ(N)) has finite index for some N ∈ Z≥0. We denote YΓ = Γ\H and
XΓ = Γ\H∗, where H∗ := H ∪ P1(Q).

1.1. Modular Forms. Fix a weight k ∈ Z>0. (In fact, the Eichler-Shimura isomor-
phism will require k ≥ 2.) We will define the space of modular forms (resp., cusp forms)
of weight k with respect to the congruence subgroup Γ.

Modular forms with respect to Γ are holomorphic functions on H obeying a certain
invariance (“automorphy”) property, which we now describe. For each weight k ∈ Z>0,
the space of holomorphic functions f : H → C admits a right GL+

2 (Q)-action: given
such an f and α = ( a b

c d ) ∈ GL+
2 (Q), define the action by

f |kα(z) := (detα)k/2j(α, z)−kf(αz),
1
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where j(α, z) := cz+ d and αz is the action of GL+
2 (Q) on H by linear fractional trans-

formations. A modular form of weight k with respect to Γ must satisfy the automorphy
equation f |kγ = f for all γ ∈ Γ.

Modular forms must also be “holomorphic” at the cusps. Let s ∈ P1(Q) and choose
some γ ∈ SL2(Q) such that γ(i∞) = s. For any z ∈ H, denote Γz as the stabilizer of z
in Γ. We then have

γ−1Γsγ · {±I2} = (γ−1Γγ)i∞ · {±I2}

⊆ SL2(Z)i∞ = ±
(
1 Z
0 1

)
=⇒ γ−1Γsγ · {±I2} = ±

(
1 hZ
0 1

)
for some h > 0. In the case where k is odd, we say that the cusp s is regular if
γ−1Γsγ is generated by ( 1 h

0 1 ), and we call it irregular otherwise. This distinction will
be important in computing the dimension of the space of modular forms.

Let β ∈ Γs such that γ−1βγ = ( 1 h
0 1 ). On the one hand, we have by definition

(f |kγ)|k( 1 h
0 1 )(z) = f |kγ(z + h).

On the other hand, noting β ∈ Γ, we have

(f |kγ)|k( 1 h
0 1 ) = (f |kγ)|kγ−1βγ = f |kγ,

hence f |kγ(z + h) = f |kγ(z). This means we have a Fourier expansion of f |kγ around
z = s in the form

f |kγ(z) =
∞∑

n=−∞

cn(f, s)e
2πinz

h .

Definition 1.1 (Modular and Cusp Forms). Let k ∈ Z>0 and Γ a congruence subgroup.
A modular form of weight k with respect to Γ is a holomorphic f : H → C such that

(1) It satisfies the automorphy equation for Γ, namely f |kγ = f for all γ ∈ Γ,
(2) For each cusp s of Γ and γ ∈ SL2(Q) such that γ(i∞) = s, the Fourier expansion

of f |kγ at z = s as given above satisfies cn(f, s) = 0 for all n < 0.

We say a modular form (of weight k with respect to Γ) is a cusp form (with the same
adjectives) if cn(f, s) = 0 for all n ≤ 0 in the Fourier expansion at the cusps.

We denote Mk(Γ) (resp., Sk(Γ)) as the space of modular (resp., cusp) forms of weight
k with respect to Γ. Note that both carry a natural C-vector space structure, although
for the Eichler-Shimura isomorphism, we will view them as R-vector spaces.

One important feature of Sk(Γ) is that it has an inner product, called the Petersson
inner product. More generally, for f ∈ Sk(Γ) and g ∈ Mk(Γ), we define

⟨f, g⟩Γ :=

ˆ
YΓ

f(z)g(z) yk
dx dy

y2
,

where z = x + iy. It is evident that ⟨·, ·⟩Γ is a non-degenerate R-bilinear form, and
positive-definite Hermitian as an inner product on Sk(Γ).
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1.2. Interior Cohomology. Let L be a discrete left Γ-module, and define LΓ as the
sheaf of continuous sections of the projection Γ\(H×L) ↠ Γ\H. We will now describe
the exact sequence

0 → H1
! (YΓ, LΓ) → H1(YΓ, LΓ) → H1

∂(YΓ, LΓ)

between interior cohomology, the usual sheaf cohomology, and boundary cohomology.

Let F ∈ Sh(YΓ). Let {ci} be the cusps of XΓ, let Di,ε ⊂ YΓ be a punctured open
neighborhood around ci homeomorphic to the punctured open disk D(0, ε)∗, and denote
Dε :=

⊔
i Di,ε Denote Kε = YΓ \Dε, and let FKε be the sheaf on YΓ whose sections have

support contained inKε. If jε : Dε ↪→ YΓ is the natural inclusion, then we have the short
exact sequence 0 → FKε → F → jε,!j

∗
εF → 0. Denoting H i

Kε
(YΓ,F) := H i(YΓ,FKε),

we have the long exact sequence

· · · → H i−1(Dε,F) → H i
Kε
(YΓ,F) → H i(YΓ,F) → H i(Dε,F) → H i+1

Kε
(YΓ,F) → · · · .

We now define the compactly supported cohomology and boundary cohomol-
ogy to be

H i
c(YΓ,F) := lim−→H i

Kε
(YΓ,F)

H i
∂(YΓ,F) := lim−→H1(Dε,F),

where the directed system for both consists of maps in the direction of decreasing ε.
Taking the direct limit of the long exact sequence above with F = LΓ, and noting that
direct limits preserve exactness, we get the exact sequence

H0
∂(YΓ, LΓ) → H1

c (YΓ, LΓ) → H1(YΓ, LΓ) → H1
∂(YΓ, LΓ).

Finally, we define the interior cohomology, denoted H1
! (YΓ, LΓ), as the image of

the map H1
c (YΓ, LΓ) → H1(YΓ, LΓ). We then have the desired short exact sequence

0 → H1
! (YΓ, LΓ) → H1(YΓ, LΓ) → H1

∂(YΓ, LΓ).

2. Eichler-Shimura Map

We now construct the Eichler-Shimura map between modular forms of weight k with
respect to Γ and a certain first cohomology group of YΓ. Afterwards, we will prove
that this map is in fact an isomorphism of R-vector spaces. (The map being Hecke-
equivariant was proven in class.)

Let n = k − 2. For the cohomology side of the Eichler-Shimura map, we will set
L = L(n,R) to be R[X, Y ]n, the space of homogeneous polynomials in R[X, Y ] of
degree n. Upon specifying an R-basis {e1, e2} of R2, we have an R-vector space iso-

morphism L(n,R) ≃ (Symn R2)∨ where X iY n−i 7→ e∨i1 ⊗ e
∨(n−i)
2 . Note that SymnR2,

seen as an R-subspace of (R2)⊗n, has a natural SL2(R)-action induced from the stan-
dard representation (i.e., left-multiplication) on R2. Passing this SL2(R)-action over
the specified isomorphism above gives an SL2(R)-module, hence a Γ-module, structure
for L(n,R).
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Since L = L(n,R) is flat over R, tensoring LΓ over R with the holomorphic de Rham
complex

0 → C → OYΓ
→ Ω1

YΓ
→ 0

yields the short exact sequence

0 → L(n,C)
Γ
→ L(n,R)

Γ
⊗R OYΓ

→ L(n,R)
Γ
⊗R Ω1

YΓ
→ 0,

where L(n,C) = C[X, Y ]n and R is the constant sheaf for R on YΓ. Note we have a
natural map

Mk(Γ) → H0(YΓ, L(n,R)
Γ
⊗R Ω1

YΓ
)(1)

f 7→ ωf (z) := (X − zY )n ⊗ f(z) dz,

where, given a basis {e1, e2} of R2 and the corresponding basis {ei1 ⊗ en−i
2 : 0 ≤ i ≤ n}

for Rn+1, the term (X − zY )n is the product

(Xn, Xn−1Y, . . . , Y n)


1

. .
.

(−1)n−1
(
n
1

)
(−1)n




zn

zn−1

...
1

 .

We also have the coboundary map from the de Rham complex (post-tensoring)

(2) H0(YΓ, L(n,R)
Γ
⊗R Ω1

YΓ
)

δ−→ H1(YΓ, L(n,C)
Γ
).

Composing the maps from (1) and (2), we get a natural map

Mk(Γ) → H1(YΓ, L(n,C)
Γ
)

f(z) 7→ [ωf ] := δ(ωf ).

Denoting Mk(Γ) = {f(z) : f ∈ Mk(Γ)}, the above map naturally extends to the
Eichler-Shimura map

ES : Sk(Γ)⊕Mk(Γ) → H1(YΓ, L(n,C)
Γ
).

We examine more closely the image of cusp forms under this map. Because f ∈ Sk(Γ)
vanishes at the cusps, so does ωf , hence we have ωf ∈ H0

c (YΓ, L(n,R)
Γ
⊗R Ω1

YΓ
).1

Since sheaf cohomology commutes with direct limits [Sta25, Tag 0739], we have [ωf ] ∈
H1

c (YΓ, L(n,C)
Γ
), which maps into H1

! (YΓ, L(n,C)
Γ
) ⊂ H1(YΓ, L(n,C)

Γ
). Thus, the

Eichler-Shimura map restricts to

ES : Sk(Γ)⊕ Sk(Γ) → H1
! (YΓ, L(n,C)

Γ
).

The objective of the proceeding two sections is to prove the following theorem.

Theorem 2.1 (Eichler-Shimura Isomorphism). The Eichler-Shimura map

ES : Sk(Γ)⊕Mk(Γ) → H1(YΓ, L(n,C)
Γ
)

1This justification is incomplete. See the end of §5.5 for a complete explanation.

https://stacks.math.columbia.edu/tag/0739
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is an isomorphism of R-vector spaces, and it restricts to an isomorphism

ES : Sk(Γ)⊕ Sk(Γ) → H1
! (YΓ, L(n,C)

Γ
).

Furthermore, these two isomorphisms are Hecke-equivariant.

Remark 2.2. The Hecke-equivariance was proved in class, so we will omit its proof in
this exposition.

3. Proof of Isomorphism I: Injectivity

Simply put, we seek to prove ES is both injective and surjective. For injectivity, we
primarily follow the argument in [Shi71, §8.2] (likewise [Hid93, §6.2]). For surjectivity,
we provide two proofs, the first originating from [Shi71], and both presented in [Hid93].

Our method of proof will be to construct a pairing A : Sk(Γ) ×Mk(Γ) → C which
factors through the Eichler-Shimura map. The result will follow from the fact that A
is non-degenerate, which we will show by expressing A in terms of the Petersson inner
product.

The construction of such a pairing begins on the side of cohomology, where for a
general Γ-module L we have a cup product [Hat02, p.209]

H1
c (YΓ, LΓ)×H1(YΓ, LΓ)

∪−→ H2
c (YΓ, LΓ ⊗ LΓ).

Note that on differential forms, the cup product in de Rham cohomology is simply
the wedge product.

In our setting of interest L = L(n,C), we seek C-linear maps H2
c (YΓ, LΓ ⊗ LΓ)

B−→
H2

c (YΓ,C)
Tr−→ C. With such maps, we can then define a pairing A on Sk(Γ) ×Mk(Γ)

by the following composition.

A : Sk(Γ)×Mk(Γ)
id×(·)−−−→ Sk(Γ)×Mk(Γ)

ES−→ H1
c (YΓ, L(n,C)

Γ
)×H1(YΓ, L(n,C)

Γ
)

∪−→ H2
c (YΓ, L(n,C)

Γ
⊗ L(n,C)

Γ
)

B−→ H2
c (YΓ,C)

Tr−→ C.

We first define the map B; it suffices to construct a C-bilinear map (which, abusing
notation, we also call B)

B : L(n,C)⊗ L(n,C) → C.
In the case n = 1, we have a very natural choice for B given by the determinant

L(1,C)⊗ L(1,C) det−→ C

(aX + bY, cX + dY ) 7→ det

(
a c
b d

)
.
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Note we can write the determinant as

det

(
a c
b d

)
= (a b)

(
0 1
−1 0

)(
c
d

)
.

Specify an isomorphism L(1,C) ≃ (C2)∨ (i.e., choose a basis {e1, e2} of C2), and let
Θ1 be the linear operator on C2 with matrix ( 0 1

−1 0 ) with respect to {e1, e2}. Let Θn be
the linear operator on Symn C2 induced from Θ1, meaning it has matrix representation
with respect to {ei1 ⊗ en−i

2 } as

Θn :=


1

. .
.

(−1)n−1
(
n
1

)
(−1)n

 .

Identifying L(n,C) ≃ (Symn C2)∨ means Θn induces the linear operator Θ−⊺
n on

L(n,C). We now define our map B : L(n,C)⊗2 → C as

B

(
n∑

i=0

aiX
iY n−i ⊗

n∑
j=0

bjX
jY n−j

)
= (ai)

⊺
iΘ

−⊺
n (bj)j =

n∑
k=0

an−kbk(−1)n−k

(
n

k

)−1

.

Remark 3.1. Because this computation will be used later, we note here that

B ((X − zY )n ⊗ (X − zY )n) =
n∑

k=0

(−1)k
(
n

k

)
zk(−1)n−k

(
n

n− k

)
zn−k(−1)n−k

(
n

k

)−1

=
n∑

k=0

(−1)kzkzn−k

(
n

k

)
= (z − z)n = (−2iy)n.

The trace map is simply given by the isomorphism

H2
c (YΓ,C) ≃ H2

c (YΓ;C) ≃ H0(YΓ;C) ≃ C,

where H2
c (YΓ;C) is compactly supported singular cohomology, the first isomorphism

is a standard comparison theorem between sheaf and singular cohomology, the second
follows from Poincaré duality, and the last comes from YΓ being connected.

More concretely, we can view H2
c (YΓ,C) in terms of de Rham cohomology, so every

element is represented by some 2-form on YΓ with compact support. Then, the trace
map amounts to taking the integral over YΓ, i.e.,

Tr([ω]) =

ˆ
YΓ

ω.

We now show that A is non-degenerate – in fact, we show that it agrees with the
Petersson inner product up to constant. Using the above interpretation of the trace, we
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have the following concrete description of the pairing A: for f ∈ Sk(Γ) and g ∈ Mk(Γ),

A(f, g) :=

ˆ
YΓ

ωf ∧Θ−⊺
n ωg

=

ˆ
YΓ

B ((X − zY )n ⊗ (X − zY )n) · f(z)g(z) dz ∧ dz

=

ˆ
YΓ

(−2iy)nf(z)g(z) · (−2i)dx ∧ dy

(n=k−2)
= (−2i)k−1

ˆ
YΓ

f(z)g(z)yk
dx dy

y2

= (−2i)k−1 ⟨f, g⟩Γ .

This implies that the Petersson inner product, which is non-degenerate, factors
through the Eichler-Shimura map, and injectivity of the latter follows.

4. Proof of Isomorphism II: Surjectivity

To show that ES is an isomorphism, we are left to prove that the dimension over R
on both sides are the same. Note that L(n,R)

Γ
⊗R C ≃ L(n,C)

Γ
, and so proving this

for the restricted Eichler-Shimura isomorphism amounts to showing

2 dimC Sk(Γ)
?
= dimR H

1
! (YΓ, L(n,R)

Γ
).

4.1. Dimension of Space of Cusp Forms. We start with the left side, which we
compute via Riemann-Roch. The key is to interpret cusp forms as global sections of
some line bundle, which we describe by its associated divisor.

Denote Ak(Γ) as the space of automorphic forms of weight k with respect to Γ, i.e.,
the space of functions satisfying the definition of a modular form (of weight k w.r.t. Γ),
but with the “holomorphic at the cusps” condition replaced with “meromorphic at the
cusps.”2 We first want to define a divisor associated to any 0 ̸= ϕ ∈ Ak(Γ). For each
p ∈ XΓ, we will define a valuation-at-p, denoted vp, on Ak(Γ).

Suppose first that p ∈ YΓ. Lift p to some p0 ∈ H, and let λ : H → D (where D is
the unit disk) be a biholomorphism sending p0 7→ 0. If #StabΓ(p0) = e, then the map
locally around p0 7→ p given in coordinates by z 7→ ze is a holomorphic homeomorphism,
hence t := λ(z)e is a uniformizer at p. We can then define

vp(ϕ) :=
1

e
v(z−p0)(ϕ).

We define the valuation similarly at the cusps. If p ∈ Γ\P1(Q), with lift p0 ∈ P1(Q),
then we can write a Fourier series expansion Φ(qµh) for ϕ|kγ at i∞ as in §1.1, where
γ(i∞) = p0, qh := e2πiz/h, and µ = 1/2 only when k is odd and p is an irregular cusp.
Then, we naturally define

vp(ϕ) = µ · vqµh (Φ).

2We assume −I2 /∈ Γ for odd k to ensure Ak(Γ) ̸= 0.
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We can now define

div ϕ :=
∑
p∈XΓ

vp(ϕ) · p, 0 ̸= ϕ ∈ Ak(Γ).

Let {q1, . . . , qu} (resp., {q′1, . . . , q′u′}) be the regular (resp., irregular) cusps of Γ. Note
that if a cusp s is irregular and k is odd, then the Fourier expansion of f |kγ, where
γ ∈ SL2(Q) satisfying γ(i∞) = s, is a power series in eπinz/h, whereas otherwise it is a
series in e2πinz/h. As a result, we can realize Sk(Γ) as a subspace of Ak(Γ) via

Sk(Γ) =

{
{ϕ ∈ Ak(Γ) : div ϕ ≥

∑u
j=1 qj +

∑u′

j=1 q
′
j} k even

{ϕ ∈ Ak(Γ) : div ϕ ≥
∑u

j=1 qj +
1
2

∑u′

j=1 q
′
j} k odd.

Let K denote the field of meromorphic functions on XΓ. As XΓ is compact, it follows
that Ak(Γ) is one-dimensional over K, meaning that given a fixed 0 ̸= ϕ0 ∈ Ak(Γ) and
some ϕ ∈ Ak(Γ), there exists some f ∈ K such that ϕ = f · ϕ0. Denoting B = div ϕ0,
the above can be formulated as

Sk(Γ) =

{
{f ∈ K : div f ≥ −B +

∑u
j=1 qj +

∑u′

j=1 q
′
j} k even

{f ∈ K : div f ≥ −B +
∑u

j=1 qj +
1
2

∑u′

j=1 q
′
j} k odd.

Remark 4.1. One should first show that Ak(Γ) ̸= 0 for k ≥ 2. We do not demonstrate
this fact here, but [Shi71, Prop. 2.15] is the relevant statement.

Note that for any f ∈ K, its associated divisor div f cannot have non-integer coeffi-
cients, so we can take the floor ⌊·⌋ of each coefficient. If D =

∑
p cp · p ∈ Q⊗Z DivXΓ,

then denote ⌊D⌋ :=
∑

p⌊cp⌋ · p ∈ DivXΓ. Denoting B′ = B −
∑

qj −
∑

q′j, we then
have, in the notation of Riemann-Roch,

dimC Sk(Γ) = ℓ([B′]).

Proposition 4.2. Suppose k is even. Let {ε1, . . . , εr} be the elliptic points of Γ, with
εi having order ei. Denote {qj}uj=1 and {q′j}u

′
j=1 as the regular and irregular cusps,

respectively, as above. For any 0 ̸= ϕ ∈ Ak(Γ), we have

div ϕ = div η +
k

2

(
r∑

i=1

(
1− 1

ei

)
· εi +

u∑
j=1

qj +
u′∑
j=1

q′j

)
,

where η := ϕ(z)(dz)k/2.

Proof. It suffices to check the evaluations of vp agree on both sides for all p ∈ XΓ. We
start with the non-cusps p ∈ YΓ, in which case the desired statement is

vp(ϕ) = vp(η) +
k

2

(
1− 1

e

)
.

Take t = λ(z)e the uniformizer at p as defined in the beginning of this subsection.
Then, we have dt/dz = e · λ(z)e−1 · dλ/dz, and so

vp(dt/dz) =
1

e
· vz−p0(e · λ(z)e−1 · dλ/dz) = 1− 1

e
.
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Noting by definition of t that vp(dt) = 0, we can compute

vp(η) = vp(ϕ(z)(dz)
k/2) = vp

(
ϕ(dt)k/2(dz/dt)k/2

)
= vp(ϕ) +

k

2
vp(dz/dt) = vp(ϕ)−

k

2

(
1− 1

e

)
,

and the desired equation follows.

Now suppose p ∈ XΓ−YΓ is a cusp. The desired statement here is vp(ϕ) = vp(η)+k/2.
Taking again γ such that γ(i∞) = p and qh = e2πiz/h, if we define coordinates w = γz
and denote Φ(qh) as the Fourier series expansion of ϕ|kγ at i∞, we get

ϕ(w)(dw)k/2 = ϕ|kγ(z)(dz)k/2

= Φ(q)(dq)k/2(dz/dq)k/2

= Φ(q)(dq)k/2 ·
(
2πi

h
· q
)−k/2

.

Thus,

vp(η) = vq
(
Φ(q)(2πi/h)−k/2q−k/2(dq)k/2

)
= vq(Φ)−

k

2
= vp(ϕ)−

k

2
,

and the conclusion follows. □

From this, one can deduce the following statement for all k ≥ 2.

Corollary 4.3. Maintain the notation as in Proposition 4.2 above. Let g be the genus
of XΓ. Then, for all k ≥ 2 and 0 ̸= ϕ ∈ Ak(Γ),

deg(div ϕ) =
k

2

(
(2g − 2) +

r∑
i=1

(
1− 1

ei

)
+ u+ u′

)
.

Proof. The case for k even is immediate from Proposition 4.2. For k odd, we can still
deduce it from the above proposition via the observation div(ϕ) = 1

2
div(ϕ2). □

The following proposition has two purposes. First, it shows that deg(div ϕ) > 0 for
0 ̸= ϕ ∈ Ak(Γ). Second, the beginning construction in its proof is necessary to study
the singular (in fact, simplicial) cohomology of YΓ and its modifications. In this spirit,
we will only give the setup and general idea of the proof, leaving the details for [Shi71,
Theorem 2.20].

Proposition 4.4. Denote g as the genus of XΓ, m the number of inequivalent cusps of
Γ, and {e1, . . . , er} the orders of the inequivalent elliptic points of Γ. Then,

1

2π

ˆ
YΓ

dx dy

y2
= 2g − 2 +m+

r∑
i=1

(
1− 1

ei

)
.

Note that as the left is a volume computation, it must be strictly positive, and hence
Corollary 4.3 above implies that deg(div ϕ) is always positive.
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Proof. By Radó’s Theorem (see [DM68] for a proof), any compact Riemann surface
can be triangulated. Indeed, we can take a basis of the homology group H1(XΓ;R) to
get a 4g-sided polygon represented by a1b1a

−1
1 b−1

1 · · · agbga−1
g b−1

g , so there are 2g edges
given by {ai, bi}. Without loss of generality, this polygon can be arranged such that
all elliptic points and cusps are in the interior of the polygon. One can think of this
polygon as a simplicial complex on XΓ. We can then add all elliptic points and cusps
as 0-simplices, and after fixing one vertex of the polygon, we attach non-intersecting
1-simplices in both directions between the vertex and each of the elliptic points/cusps.
The resulting polygon now has 4g + 2m+ 2r sides. We finally add an arbitrarily small
circle around each elliptic point/cusp.

Upon lifting to H∗, we can identify this polygon with a fundamental domain △ of Γ
in H∗. By construction, the boundary can be written in the form

∂△ =

2g+m+r∑
i=1

(si − γi · si) +
m+r∑
i=1

ti,

where the si’s correspond to the sides of the polygon, γi ∈ Γ are chosen to cover all
sides in the reverse direction, and the ti’s are the small circles.

Denote η = y−1dz (where z = xiy), so that dη = y−2dx dy. From the theorem
statement, we are interested in computing

´
YΓ

dη. By our above construction and
Stoke’s Theorem, we can write the volume as

µ(YΓ) = lim
radius(ti)→0

ˆ
△
dη = lim

radius(ti)→0

ˆ
∂△

η.

In terms of the boundary decomposed as above, we have that

ˆ
∂△

η =

2g+m+r∑
i=1

ˆ
si

(η − η ◦ γi) +
m+r∑
i=1

ˆ
ti

η.

The main steps in the remainder of the proof rely on the following facts:

(1) For all γ ∈ SL2(R), we have η ◦ γ − η = −2i · d log(j(γ, z)).
(2) If 0 ̸= ϕ ∈ A2(Γ) and ξ = d(log ϕ), then for any γ ∈ Γ, we have ξ ◦ γ − ξ =

2 · d(log j(γ, z)).
(3) The computations relating vp(ϕ) and vp(ϕ(z)dz) (for 0 ̸= ϕ ∈ A2(Γ)) from the

proof of Proposition 4.2 in the case k = 2.

Using these, once can rewrite each summand on the right as terms appearing in the
equation for Corollary 4.3. □

We now split into three cases: (1) k = 2, (2) k > 2 even, and (3) k ≥ 3 odd. We will
rely on the above computation.

k = 2: Denote M1 = M1
XΓ

as the sheaf of meromorphic differential 1-forms on XΓ. As
XΓ is a curve, Riemann-Roch tells us that dimC Γ(XΓ,M1) = g the genus of XΓ.
In the case k = 2, we claim that the map f 7→ f · dz is an (obviously C-linear)
isomorphism between S2(Γ) ≃ Γ(XΓ,M1). This is an immediate consequence of
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Proposition 4.2: we have div(f(z)dz) ≥ 0 iff div(f) ≥
∑

qj+
∑

q′j iff f ∈ S2(Γ).
We conclude dimC S2(Γ) = g.

k > 2 even: Recall we defined B′ = B−
∑

qj −
∑

q′j, and we have Sk(Γ) ≃ L([B′]). We will
invoke Riemann-Roch to compute the dimension of the right. We first write B′

in the form of Proposition 4.2. Letting ξ = ϕ0(dz)
k/2 (where B = div ϕ0), the

proposition allows us to write

B′ = B −
u∑

j=1

qj −
u′∑
j=1

q′j = div(ϕ0)−
u∑

j=1

qj −
u′∑
j=1

q′j

= div(ξ) +
k

2

(
r∑

i=1

(
1− 1

ei

)
· εi +

u∑
j=1

qj +
u′∑
j=1

q′j

)
−

u∑
j=1

qj −
u′∑
j=1

q′j.

Letting m = u+ u′ denote the total number of inequivalent cusps and n = k/2
for simplicity, we can compute directly from the above

deg(⌊B′⌋) = deg(div ξ) + (n− 1)m+
r∑

i=1

⌊
n(ei − 1)

ei

⌋

= −m+ n(2g − 2 +m) +
r∑

i=1

⌊
n(ei − 1)

ei

⌋
,

where deg(div ξ) = n deg(div(dz)) = n(2g − 2) as XΓ is a curve. Noting that
⌊n(ei − 1)/ei⌋ ≥ (n− 1)(ei − 1)/ei, we obtain

deg(⌊B′⌋) ≥ 2g − 2 + (n− 1)

(
2g − 2 +m+

r∑
i=1

(
1− 1

ei

))
.

By Proposition 4.4, the latter term is positive, hence deg⌊B′⌋ > 2g − 2. By
Riemann-Roch, this forces ℓ(⌊B′⌋) = deg⌊B′⌋−g+1. Substituting back k = 2n,
we conclude

dimC Sk(Γ) = (k − 1)(g − 1) +

(
k

2
− 1

)
m+

r∑
i=1

⌊
k(ei − 1)

2ei

⌋
.

k ≥ 3 odd: The proof is similar enough to the above case k > 2 even, so we do not write out
all the details here. The complete proof can be found in [Shi71, p.47]. The key is
to use Proposition 4.2 for ϕ = ϕ2

0 and η = ϕ(dz)k, and note div(ϕ0) =
1
2
div(ϕ).

One small but important detail is the assumption that −I2 /∈ Γ for k odd (this,
recall, was to guarantee Ak(Γ) ̸= {0}), so notably each order ei must be odd.
In the end, one can attain

dimC Sk(Γ) = (k − 1)(g − 1) +
u(k − 2)

2
+

u′(k − 1)

2
+

r∑
i=1

⌊
k(ei − 1)

2ei

⌋
.

Note that using the exact same methods, one can compute the dimensions of Mk(Γ). It
should not be of much surprise that each regular cusp contributes an extra dimension.
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Explicitly, we have dimC M2(Γ) = g + 1m̸=0(m− 1) and

dimC Mk(Γ) =

(k − 1)(g − 1) + k
2
·m+

∑r
i=1

⌊
k(ei−1)

2ei

⌋
k > 2 even

(k − 1)(g − 1) + u·k
2
+ u′(k−1)

2
+
∑r

i=1

⌊
k(ei−1)

2ei

⌋
k ≥ 3 odd.

4.2. Comparing Sheaf to Singular Cohomology. We now turn to the other side
of the Eichler-Shimura map and compute dimR H

1
∗ (YΓ, L(n,R)

Γ
) for ∗ =!, ∅. Our first

objective is to relate these sheaf cohomology groups to singular cohomology, for which
we can compute the dimensions of H1 concretely. To pass from sheaf to singular, we
will use group cohomology as a middle man.

Before we traverse between sheaf cohomology and group cohomology, we take time
to nod at ways to go from sheaf to singular directly, or to make the passage through
different means.

The comparison between sheaf to singular in our situation can be made directly. The
general phenomenon at play is the agreement between sheaf cohomology for locally con-
stant sheaves (as is L(n,R)

Γ
) and singular cohomology with local coefficients, initiated

in [Ste43].

Lemma 4.5. Let L be a discrete Γ-module and LΓ the locally constant sheaf on YΓ

associated to L. Then, for all i ≥ 0, there exists a canonical isomorphism

H i(YΓ, LΓ)
∼= H i(YΓ;L),

where the right is singular cohomology with local coefficients.

For a general proof of this fact, namely when the topological space is locally con-
tractible and hereditary paracompact (meaning every open subset is paracompact), one
may consult [Bel21, §4.3.11].

Proof. Because YΓ = Γ\H is sufficiently nice (i.e., a metric space, hence paracompact
Hausdorff), one can find a “good cover” U of YΓ such that H i(YΓ, LΓ) ≃ Ȟ i(U , LΓ). But
in the Čech complex, the “good cover” means all cochains are maps from contractible
open sets, hence they are valued in L. Thus, the Čech complex is exactly the cochain
complex for singular cohomology with local coefficients in L. □

One could also largely bypass the discussions of group and singular cohomology
by instead comparing the cohomology of locally constant sheaves with the space of
modular symbols, which we briefly entertain now. Let ∆ = DivP1(Q) and ∆0 its
degree 0 subgroup. The space of (classical) modular symbols of weight k with respect
to Γ is given by

MSk(Γ) := HomΓ(∆
0, Symk(R2)).

One of the main achievements in the work of Ash and Stevens [AS86] is summarized
in the following theorem.

Theorem 4.6. There is a natural isomorphism of R-Hecke-modules

MSk(Γ) ∼= H1
c (YΓ, Sym

k
R(R

2)).



EICHLER-SHIMURA ISOMORPHISM 13

Although we do not adopt this method of approach, one could use modular symbols
as a bridge between sheaf and group cohomology. Indeed, if we denote {p, q} as the
divisor [p]− [q] ∈ ∆0, then we have a natural map

MSk(Γ) → H1(Γ, L(n,R))
ξ 7→ ϕξ,

ϕξ : γ 7→ ξ({∞, γ∞}).

One may check this is indeed well-defined, and moreover, its image is contained in
H1

! (Γ, L(n,R)). [Lev11, p.16]
To resume the core thread of the proof, the main bridge between sheaf cohomology

and group cohomology is the following lemma, first proven in Grothendieck’s Tohoku
paper [Gro57] and proven concisely in [Mum74, p.23].

Lemma 4.7. Let G be a discrete group and X be a topological space with a free discon-
tinuous G-action such that every point has a neighborhood which is disjoint from all of
its other G-orbits besides itself. Let Y be the quotient space of X by the G-action, and
denote π : X ↠ Y as the natural projection map. If F is an injective abelian sheaf on
Y , then π∗F is flasque and Γ(X, π∗F) is an injective G-module.

In our situation, we have G = Γ, X = H, and πΓ : H ↠ YΓ. Let L be a discrete Γ-
module, and take an injective resolution 0 → LΓ → I•. By the lemma, π∗

ΓI• is a flasque
resolution of π∗

ΓLΓ and Γ(H, π∗
ΓI•) is an injective resolution of L = Γ(H, π∗

ΓLΓ). Using
the fact that π∗

ΓLΓ = LH (the constant sheaf on H associated to L) and (πΓ,∗LH)
Γ = LΓ,

we can produce the following isomorphisms:

H i(Γ, L) = H i
(
Γ(H, π∗

ΓI•)Γ
)

≃ H i
(
Γ(YΓ, πΓ,∗π

∗
ΓI•)Γ

)
≃ H i(Γ(YΓ, I•))

= H i(YΓ, LΓ).

This applies just the same to the boundary cohomology. Given a sufficiently small
open disk Us ⊂ XΓ around a cusp s and a lift s ∈ H∗ of s, there exists an open
neighborhood Vs around s such that we have a holomorphic homeomorphism Γs\Vs

∼−→
Us, where Γs is the stabilizer of s in Γ. Thus, the lemma also gives us the isomorphism

H i(Us, LΓs
) ≃ H i(Γs, L).

This yields the following commutative diagram:

0 H1
! (YΓ, LΓ) H1(YΓ, LΓ) H1

∂(YΓ, LΓ)

0 ker
(⊕

s∈Γ\P1(Q) resΓ,Γs

)
H1(Γ, L)

⊕
s∈Γ\P1(Q) H

1(Γs, L)

≃ ≃

⊕ resΓ,Γs

It follows that the dashed vertical arrow is also an isomorphism.
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For our computational purposes, it is beneficial to describe the kernel in more explicit
terms. First, as the stabilizer of any cusp s in SL2(R) is isomorphic to R× {±I2}, we
deduce that Γs is isomorphic, at least in PSL2(Q), to Z. Working over PSL2(Q) if
necessary, we can write Γs = ⟨πs⟩ for some πs ∈ Γs. It follows that every parabolic
element of Γ is conjugate to a power of some πs, so we may reduce the subset of parabolic
elements to a set of “representatives,” which we give by P := {πs : s ∈ Γ\P1(Q)}.
We now consider the boundary part of the group cohomology exact sequence above.

Note from the definition of a 1-cocycle that any ϕ ∈ H1(Γs, L) will satisfy, for allm ∈ Z,

ϕ(πm
s ) = (1 + πs + · · ·+ πm−1

s )ϕ(πs),

hence ϕ is determined solely by its value on πs. This yields Z1(Γs, L) = L. For the
coboundaries, we note that if ϕ(πs) = (πs − 1)a for some a ∈ L, then

ϕ(πm
s ) = (1 + · · ·+ πm−1

s )ϕ(πs) = (1 + · · ·+ πm−1
s )(πs − 1)a = (πm

s − 1)a,

so B1(Γs, L) = (πs − 1)L.

It is clear from here that the kernel, which we call parabolic cohomology and
denote by H1

P (Γ, L), is the subspace of H1(Γ, L) consisting of all (equivalence classes
of) 1-cocycles ϕ such that ϕ(πs) ∈ (πs − 1)L for all cusps s.

Remark 4.8. Note from the above computation of ϕ(πm
s ), which we can extend to all

conjugates ϕ(γπm
s γ

−1), that we could have considered all parabolic elements and not
just the select subset P . In other words, we also have

H1
P (Γ, L) = {[ϕ] ∈ H1(Γ, L) : ϕ(π) ∈ (π − 1)L for all π parabolic}.

We now pass from group cohomology to singular (rather, simplicial) cohomology.

Denote Y
(0)
Γ as the open Riemann surface obtained by removing from XΓ small, disjoint

open disks around each cusp, and denote H(0) as the preimage of Y
(0)
Γ under the natural

projection H∗ ↠ Γ\H∗. Then, we can follow the beginning of the proof of Proposition
4.4 to construct a simplicial complex K of H(0) satisfying the following conditions:

(S1) K is stable under the Γ-action.
(S2) For every cusp s ∈ S, there exists a 1-chain ts of K which maps onto the

boundary of the excluded disk around s.
(S3) There exists a fundamental domain △(0) for the Γ-action in H(0) whose closure

consists of finitely many simplices in K.

With such a simplicial complexK, we can construct the exact sequence in singular co-
homology analogous to the one in group cohomology defining the parabolic cohomology
group H1

P (Γ, L).

For i ∈ {0, 1, 2}, let Ai be the R-vector space generated by the i-simplices in K.
Attached to K then is the natural chain complex

0 → A2
∂−→ A1

∂−→ A0
a−→ R → 0,

where ∂ is the usual boundary operator and a is the augmentation map given by adding
the coefficients of the 0-simplices. But this is a free R[Γ]-module resolution of R, so after
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taking the corresponding cochain complex with coefficients in L, we have a canonical
isomorphism H1(K;L) ∼= H1(Γ, L).

We treat the “boundary part” of the cohomology in a similar spirit. Denote now P
as the set of all parabolic elements in Γ. (This should not raise any concerns thanks to
Remark 4.8.) Take any π ∈ P ; we established before that π = γπsγ

−1 for some cusp s
and γ ∈ Γ. Property (K2) dictates that γ(ts) must be a 1-simplex of K. The image of
γ(ts) in △(0) has universal covering space isomorphic to R, which we embed by ιπ into

the universal cover H of △(0). By definition, the closure γ(ts) gives a triangulation of
a fundamental domain of Γπ\ιπ(R). We can now define Ai(π), for i ∈ {0, 1}, to be the

free R[Γπ]-module generated by the i-simplices in γ(ts), giving us the free resolution of
R[Γπ]-modules

0 → A1(π)
∂−→ A0(π)

a−→ R → 0.

The inclusion ιπ induces a natural inclusion of chain complexes A•(π) ↪→ A•, which
collectively gives

⊕
π∈P A•(π) → A•. It is a standard fact that free (even better,

projective) resolutions are unique up to homotopy equivalence. Consequently, if F•
(resp., F•(π)) is the standard R[Γ]-free (resp., R[Γπ]-free) resolution of R, then we get
induced homotopy equivalences between the various complexes such that the following
diagram commutes:

A•
⊕

π∈P A•(π)

F•
⊕

π∈P F•(π)

Applying HomR[Γ](−, L) everywhere and taking cohomology gives us the desired com-
mutative diagram

0 H1
P (Γ, L) H1(Γ, L)

⊕
π∈P H1(Γπ, L)

H1(K;L)
⊕

π∈P H1(K(π);L)

≃ ≃

where H•(K(π), L) is understood from the construction to be the cohomology groups
of the cochain complex HomR[Γπ ](A•(π), L). We denote the kernel of the bottom map
as H1

P (K;L), and it is evident that there is a canonical isomorphism H1
P (K;L) ∼=

H1
P (Γ, L).

It now remains to compute dimR H
1
P (K;L) and check it agrees with 2 dimC Sk(Γ)

when L = L(n,R). Our proceeding computations will heavily rely on the explicit
construction of the simplicial complex K as explained in the proof of Proposition 4.4.

Remark 4.9 (Confession). We did not have time to finish these arguments. However,
we do provide a complete proof of surjectivity in §6, which in the end is roughly the
same argument. There, the proof is slicker because we only concern ourselves with
regular cusps. For the remaining arguments using the above approach, look at the two
propositions and the corollary in [Hid93, §6.1].
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5. Modular Forms as Global Sections

We will now give a purely cohomological construction of the Eichler-Shimura map.
Three advantages of this reformulation are (1) it is less ad-hoc, (2) the dimension-
counting arguments as done in the previous section become much easier using results
from cohomology, and (3) one can naturally replace Zariski cohomology with étale
cohomology and begin to construct Galois representations, as is done in [Del71].

The entry point is that, for instance, a cusp form f(z) of weight 2 and level N can
be seen as a holomorphic 1-form f(z) dz on the modular curve X1(N) which vanishes
at the cusps. In other words, we can realize f ∈ H0(X1(N),Ω1

X1(N)(cusps)). We can

replace Ω1 with any kth-tensor power to produce cusp forms of weight 2k.

The obvious pitfall here is that we cannot recover modular forms of odd weight in
this manner. Somehow, we need to make sense of “1/2”-forms.

The beautiful answer comes from deformation theory. By seeing the dual of Ω1
X1(N)

as the (sheaf of sections of the) tangent bundle of X1(N), and noting that X1(N) is
a fine moduli space of elliptic curves with some level structure [KM85], one can study
the deformation of elliptic curves and produce a version of the Kodaira-Spencer map,
which will be of the form KS : ω⊗2 ≃ Ω1

X1(N) for some line bundle ω on X1(N). We will

then be able to define modular forms of weight k for Γ1(N) as global sections of ω⊗k.

5.1. Relative Elliptic Curves. By the principle described above, we will be working
in the relative setting, primarily with elliptic curves over an arbitrary analytic space.
We define this explicitly.

Definition 5.1 (S-elliptic curve). Let S be a complex analytic space. An elliptic
curve over S is a proper flat morphism f : E → S of analytic spaces such that its
fibers are complex elliptic curves and it comes equipped with a section e : S → E, a
group law over S, and an inverse S-morphism which make it an S-group object.

Before we proceed, we recall some important results of higher direct image sheaves.
The following analytic version of the cohomology and base change theorem (see [Har77,
Theorem 12.11] for the algebraic version) will be useful for us.

Theorem 5.2 (Cohomology and Base Change). Let f : X → Y be a proper morphism
of analytic spaces, and let F ∈ Coh(X) be flat over Y . Denote Xy := f−1(y) for the
fiber above y and Fy := F|Xy . For y ∈ Y , consider the natural map

φi(y) : Rif∗(F)y ⊗OY,y
k(y) → H i(Xy,Fy).

(1) If φi(y) is surjective, then it is an isomorphism.
(2) If φi(y) is surjective for all y ∈ Y , then φi−1(y) is surjective if and only if

Rif∗F is locally free on some open neighborhood U ∋ y. In this case, Rif∗F is
of formation compatible with arbitrary analytic base change over U .

We most frequently use this theorem to check that two derived pushforwards are
isomorphic by reducing the statement to a standard isomorphism on cohomology (e.g.,
Poincaré duality) via taking stalks. This is exactly what we do for the following corol-
lary.
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Corollary 5.3. Let f : X → Y be a proper flat morphism of analytic spaces with
connected reduced fibers. Then, the natural map OY → f∗OX is an isomorphism.

Proof. As f is proper, its fibers Xy are compact, which means we have

(R0f∗OX)y ≃ H0(Xy,OX |Xy) = C ≃ OY,y,

the first isomorphism following from the theorem above. □

Let f : E → S be an elliptic curve over S. The relative Hodge complex gives us the
short exact sequence

0 → f−1OS → OE
d−→ Ω1

E/S → 0.

The sequence is exact intuitively because h ∈ ker d if and only if h is constant
on each fiber, which is exactly the sections of the inverse image sheaf f−1OS. Note
d : OE → Ω1

E/S is surjective only because the fibers of f are elliptic curves, hence

Ω2
E/S = 0. By taking the long exact sequence for derived pushforwards, we get the

exact sequence

0 → f∗f
−1OS → f∗OE → f∗Ω

1
E/S → R1f∗(f

−1OS) → R1f∗OE.

Because f is surjective, we have f∗f
−1OS ≃ OS ≃ f∗OE, where the latter isomor-

phism is from Corollary 5.3. Thus, we can truncate the exact sequence and are left
with

0 → f∗Ω
1
E/S → R1f∗(f

−1OS) → R1f∗OE.

Since f∗f
−1OS ≃ OS, the relative Poincaré cup product gives us a natural map

R1f∗R⊗ROS ≃ R1f∗C⊗C f∗(f
−1OS)

∪−→ R1f∗(f
−1OS). But on each fiber Es := f−1(s),

this cup product is just

H1(Es,C)⊗C OS,s → H1(Es, (f
−1OS)|Es) = H1(Es,OS,s)

which is an isomorphism. Hence, we can replace R1f∗(f
−1OS) with R1f∗R⊗ROS. This

leaves us with the exact sequence

0 → f∗Ω
1
E/S → R1f∗R⊗R OS → R1f∗OE.

This exact sequence on its fibers is just

0 → H0(Es,Ω
1
Es
) → H1(Es,C) → H1(Es,OEs),

which by the Hodge decomposition is a split exact sequence. This means our relative
exact sequence is actually a short exact sequence. We can also replace the last term
R1f∗OE with f∗(Ω

1
E/S)

∨ by Serre duality on the fibers.

Denote ω = ωS := f∗Ω
1
E/S. We can write our short exact sequence in terms of ω as

follows:

(1) 0 → ω → R1f∗R⊗R OS
q−→ ω−1 → 0.
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Remark 5.4. Denoting e : S → E as the identity section, we have a natural map
Ω1

E/S → (e ◦ f)∗Ω
1
E/S = e∗f∗Ω

1
E/S induced by the S-morphism e ◦ f : E → E. The

adjunction between inverse and direct image gives a natural map e∗Ω1
E/S → f∗Ω

1
E/S. But

all stalks on both sides are one-dimensional over C, hence this is an isomorphism. We
may interpret e∗Ω1

E/S as the cotangent space of E at the identity, so ω−1 is understood

to be the relative Lie algebra LieS(E).

We will investigate the middle term of this short exact sequence, which we can rewrite
as R1f∗Z ⊗Z OS. The first property to prove is that R1f∗Z is a local system (i.e., a
locally constant sheaf, defined below) of rank 2 free Z-modules.

Definition 5.5 (Local System). Let R be a ring and R the associated constant sheaf.
A local system of R-modules is a R-module M which is locally constant. (If R = Z[Γ]
is a group ring, we say Γ-module instead of Z[Γ]-module for simplicity.)

Proposition 5.6. Let f : X → S be a proper smooth map with connected fibers of
dimension d. For any torsion-free abelian group G, the sheaf Rif∗G is a local system
of G-modules and compatible with base change for i ≤ 2d, and it vanishes for i > 2d.
Furthermore, the natural map G ⊗ R2df∗Z → R2df∗G is an isomorphism and R2df∗Z
is a local system of rank 1 free Z-modules.

Remark 5.7. It is clear (at least for G = Z) that G ≃ f∗G, and then assuming the
locally constant statement, the last statements clearly follow from Poincaré duality.
The other statements crucially make use of Theorem 5.2.

In fact, we can make our life easier by restricting S to be smooth, in which case the
result is clear from Ehresmann’s fibration theorem that f is locally trivial. One can
prove this by reducing to the case where S is smooth by working locally, see [Con05,
Theorem 1.2.1.6].

By construction, R1f∗Z is a Z-module, and the proposition confirms it is locally
constant. In special cases, such as Example 5.11 below, it is actually a constant sheaf.
One such class of examples, which gives context to §5.3 below, comes from the following
useful perspective of local systems.

Theorem 5.8. Let X be a topological space with a universal cover π : X̃ → X.3 Fix
some x ∈ X, and denote G = π1(X, x). Let R be a ring. There is an equivalence of
categories between the R-modules with an R-linear G-action and local systems of R-
modules, where an G-R-module M corresponds to the sheaf of continuous sections of

the natural projection (X̃ ×M)/G ↠ X.

Remark 5.9. By this characterization, it is clear that the sheaf L(n,R)
Γ
on YΓ is a local

system of free R-modules of rank n+ 1.

3Assuming X is connected, locally path-connected, and semi-locally simply connected is sufficient,
for instance.
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5.2. Kodaira-Spencer Map. The final part of our general discussion of S-elliptic
curves is to relate ω, which by definition is f∗Ω

1
E/S, to Ω1

S.

Consider an S-elliptic curve f : E → S. We have the following fundamental exact
sequence of differentials

0 → f ∗Ω1
S → Ω1

E → Ω1
E/S → 0,

where implicitly the latter two are differentials over the base field C. Dualizing gives
us

0 → (Ω1
E/S)

∨ → (Ω1
E)

∨ → (f ∗Ω1
S)

∨ → 0

The long exact sequence for the derived pushforward gives us connecting map δ :
f∗(f

∗Ω1
S)

∨ → R1f∗(Ω
1
E/S)

∨. We can thus consider the following composition

f∗(Ω
1
E/S)⊗ f∗(f

∗Ω1
S)

∨ id⊗δ−−−→ f∗(Ω
1
E/S)⊗R1f∗(Ω

1
E/S)

∨ ∪−→ R1f∗(OE) ≃ f∗(Ω
1
E/S)

∨,

where the last isomorphism is from relative version of Serre duality. (Once again,
the isomorphism follows from the usual Serre duality on the fibers.) Recalling ω :=
f∗(Ω

1
E/S), this leaves us with

ω ⊗ f∗f
∗(Ω1

S)
∨ → ω−1.

But note that the middle term is just Ω1∨
S since f is proper and smooth with connected

fibers. (In particular, (1) OS ≃ f∗OE and (2) Ω1
S is locally free of finite rank.) Thus,

we are left with ω ⊗ Ω∨
S → ω−1, which yields the Kodaira-Spencer map

(2) KSE/S : ω⊗2
S → Ω1

S.

5.3. Universal Elliptic Curve. In light of the Kodaira-Spencer map, our immediate
objectives are self-explanatory:

(1) Construct an elliptic curve over S = XΓ := Γ\H∗.
(2) Show in this case that KS is an isomorphism (at least, up to twisting by the

divisor of cusps).

The first point will really be divided into three steps:

(a) Construct an elliptic curve over S = H.
(b) Descend the short exact sequence (1) and the Kodaira-Spencer map (2) from

S = H to S = YΓ := Γ\H.
(c) Extend both to the compactification XΓ.

We naturally begin with (1a). We employ the fact that H (in particular, SL2(Z)\H)
parametrizes complex elliptic curves C/ ⟨1, τ⟩ by the variable τ ∈ H to construct a
relative elliptic curve over H, which we denote f an : Ean → H.

Definition 5.10 (Elliptic Curve over H). We construct f an : Ean → H in three steps.

(1) Consider the lattice

Λ = Z2 ×H ↪→ C×H
((m,n), z) 7→ (m+ nz, z).

(2) Consider the quotient top space (C×H)/Λ where (τ, z) ≃ (τ +λ, z) for λ ∈ Λz.
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(3) The projection map π : C × H → (C × H)/Λ is a priori just a local C∞-
isomorphism, but one can endow C×H with a unique complex manifold struc-
ture such that π is a local biholomorphism. We denote C×H with the complex
structure as Ean.

As mentioned before, when S is connected (as is the case for S = H), the higher direct
image R1f∗Z must be constant. As we will soon care about an explicit isomorphism

R1f∗Z
≃−→ Z2, we construct such an isomorphism αan in the case f = f an. To define

such isomorphisms, we will fix once and for all i =
√
−1 ∈ C.

Example 5.11 (R1f an
∗ Z is constant). We will construct a map αan : R1f an

∗ Z → Z2. The
key is to identify Z2 ≃ H1(C/ ⟨1, i⟩ ,Z); note that this requires a choice of basis for Z2,
as canonically from Poincaré duality we have Z2 ≃ H1(C/ ⟨1, i⟩ ,Z) ≃ H1(C/ ⟨1, i⟩ ,Z)∨.
We have a C∞-isomorphism

(x+ iy, z) (x+ zy, z)

C×H C×H

H

C∞ iso.

which induces a C∞-isomorphism (C/ ⟨1, i⟩)×H → Ean over H, as shown below.

(C/ ⟨1, i⟩)×H (C×H)/Λ

H H

C∞ iso

prH fan

id

The push-pull map [Vak25, §2.7.4] gives us a natural map f an
∗ Z → prH,∗ Z, which further

induces a map on the derived pushforward R1f an
∗ Z → R1 prH,∗ Z. But on fibers, the

latter is canonically isomorphic to H1(C/ ⟨1, i⟩ ,Z) ≃ (Z2)∨ everywhere, so we have the
map R1f an

∗ Z → (Z2)∨, which we can easily check on stalks to be an isomorphism.

The last minor step is to specify an isomorphism (Z2)∨ ≃ Z2. Following [Del71,
§2.1], we will select an orientation-reversing isomorphism so that the composition αan :

R1f an
∗ Z ≃−→ (Z2)∨ ≃ Z2 makes the following diagram anti -commutative:∧2R1f an

∗ Z
∧2 Z2

R2f an
∗ Z Z

∧2 αan

∪ ≃ ≃

≃

Remark 5.12. The right vertical arrow is, given a choice of basis {e1, e2} of Z2, the map
e1∧e2 7→ 1, the left vertical arrow is the relative cup product which one can check is an
isomorphism on its stalks, and the bottom map is the canonical map from Proposition
5.6.
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Definition 5.13 (Permitted Isomorphism). Following Deligne, we say an isomorphism
α : R1f∗Z → Z2 for some relative elliptic curve f is permitted if it satisfies the above
anti-commutative diagram.

We maintain a fixed i =
√
−1 ∈ C, and we define H such that i ∈ H. Consider the

functor AnSpC → Set which associates to a complex analytic space S the set of pairs

(f : E → S, α : R1f∗Z
≃−→ Z2) where f gives an S-elliptic curve and α is permissible.

Our construction (f an, αan) is significant in the following way.

Proposition 5.14. This functor is representable by (f an : Ean → H, αan : R1f an
∗ Z ≃−→

Z2).

Remark 5.15. One can define a similar functor for relative complex tori of a specified
relative dimension, where the associated set must also carry the data of a principal
polarization on the complex torus. Such a functor will always be representable, see
[Con05, Theorem 1.4.3.1].

Remark 5.16. Sometimes we will refer to this universal object abstractly as f : EX → X
for more natural notation, but for the proceeding, it is always kosher to choose a base
point i and work with the coordinate-specified version f an.

We wish to study the short exact sequence (1) and the Kodaira-Spencer map (2) for
this universal relative elliptic curve (f : EX → X,αX) = (f an : Ean → H, αan). The map
αan gives us a de facto isomorphism R1f an

∗ Z ≃ Z2. In this setting, the Kodaira-Spencer
map will also be an isomorphism.

In fact, it is equivariant under SL2(R), whose action we now describe. The SL2(R)-
action on Ω1

X comes from the natural action on X = H. For ω, the universal property

of (f : EX → X,αX) means that the isomorphism γ ◦ αX : R1f∗R
≃−→ R2 γ−→ R2 for

any γ ∈ SL2(R) induces an SL2(R)-action on R1f∗R, which we can then descend to
ω−1 via the surjection R1f∗R⊗R OX → ω−1 from the short exact sequence. Taking the
standpoint that modular forms of weight k should be global sections of ω⊗k, we have
that this SL2(R)-action gives exactly the automorphy condition for modular forms, see
[Del71, §2.3].

Theorem 5.17. For the universal elliptic curve EX → X, the Kodaira-Spencer map
KSEX/X : ω⊗2

X → Ω1
X is an SL2(R)-equivariant isomorphism.

Almost tautologically, the short exact sequence (1) becomes SL2(R)-equivariant as
well. For a complete description of the SL2(R)-action on each sheaf and the equivariance
of the short exact sequence, consult [Con05, Lemma 1.5.4.4].

5.4. Descent to Modular Curves. From this SL2(R)-equivariance, one expects to
produce both the short exact sequence and the Kodaira-Spencer map (as an isomor-
phism) for the relative elliptic curve over the base space YΓ := Γ\H, where Γ ⊂ SL2(R)
is a Fuchsian group of the first kind (meaning Γ\H∗ is compact, see [Shi71, §1.5]).
Indeed, one can perform such a descent along H → YΓ via Grothendieck’s theory of
descent, which we describe in the topological setting.
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Definition 5.18 (Γ-sheaf). Let π : X → S be a covering map of topological spaces, and
let Γ be a group of (right) S-automorphisms of X which acts transitively on fibers and

freely on X. A Γ-sheaf on X is a sheaf F equipped with isomorphisms αγ : γ∗F ≃−→ F
for each γ ∈ Γ ⊂ AutS(X) which satisfy the relations αγ ◦ γ∗ασ = αγσ. Note this
endows a (left) Γ-action on F .

Theorem 5.19. Take the setup (π : X → S,Γ ⊂ AutS(X)) as in the above definition.
There is an equivalence of categories between Γ-sheaves of sets on X and sheaves of sets
on S, where G 7→ π∗G and F 7→ π∗(F)Γ (the Γ-invariant sections of π∗(F)).

Denote fΓ : H → Γ\H = YΓ, and let ωYΓ
:= fΓ,∗(ωX)

Γ. Applying this to R2 gives us
a local system UYΓ

of 2-dimensional R-vector spaces on YΓ. We thus have a sequence

(3) 0 → ωYΓ
→ UYΓ

⊗R OYΓ
→ ω−1

YΓ
→ 0.

This is clearly left-exact because both the direct image and taking Γ-invariants are in
general left-exact. Right-exactness follows from the SL2(R)-equivariance, so taking the
Γ-invariants should preserve surjectivity on the stalks. In a similar vein, we descend

the Kodaira-Spencer map to an isomorphism KSYΓ
: ω⊗2

YΓ

≃−→ Ω1
YΓ
.

To complete our reformulation of modular forms, we need to extend the Kodaira-
Spencer map to the cusps, i.e., define it for the base space XΓ := Γ\H∗. It turns out
that one can only do this when all cusps of XΓ are regular, as defined below.

Definition 5.20 (Regular, Irregular). Let s ∈ Γ\P1(Q) be a cusp, and γ ∈ SL2(R)
such that γs = i∞. Then, we have by definition

{±1} · (γΓxγ
−1) = {±1} ·

(
1 hZ
0 1

)
and hence γΓxγ

−1 =

(
ε h
0 ε

)Z

for ε ∈ {±1}. We say s is regular if ε = +1 and

irregular if ε = −1.

If there are no irregular cusps in XΓ, then we can extend the Kodaira-Spencer iso-
morphism by twisting the sheaf of differentials by the divisor of cusps.

Theorem 5.21. Let Γ ⊂ SL2(R) be a Fuchsian group of the first kind such that XΓ

has no irregular cusps. Then, the Kodaira-Spencer map KSYΓ
induces an isomorphism

KSXΓ
: ω⊗2

XΓ

≃−→ Ω1
XΓ

(cusps).

For a complete proof, including a discussion of regular cusps, see [Con05, §1.5.6-7].
Intuitively, extending to the cusps involves working locally at the cusp. Taking the
cusp at infinity, for instance, our local coordinates are q = e2πiz, so dq/q = 2πi dz. This
indicates that we should allow for simple poles at the cusps.

5.5. Modular Forms and the Eichler-Shimura Map. We are now ready to define
modular forms cohomologically and construct the Eichler-Shimura map (which will
evidently recover our construction from before) using this framework.
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Definition 5.22 (Modular Forms). Let k ≥ 2 be an integer and Γ ⊂ SL2(R) be a
Fuchsian group of the first kind. Then, the space of modular forms of weight k
with respect to Γ (with coefficients in C) is the C-vector space

Mk(Γ,C) := H0(XΓ, ω
⊗k
XΓ

).

The space of cusp forms (of weight k with respect to Γ) is the subspace

Sk(Γ,C) := H0(XΓ, ω
⊗k
XΓ

(−cusps)).

Note by KSXΓ
, so long as all cusps are regular, we can write these spaces as (for k ≥ 0)

Mk+2(Γ,C) = H0(XΓ, ω
⊗(k+2)
XΓ

) = H0(XΓ, ω
⊗k
XΓ

⊗ Ω1
XΓ

(cusps))

and

Sk+2(Γ,C) = H0(XΓ, ω
⊗(k+2)
XΓ

(−cusps))

= H0(XΓ, ω
⊗k
XΓ

(−cusps)⊗ Ω1
XΓ

(cusps))

= H0(XΓ, ω
⊗k
XΓ

⊗ Ω1
XΓ

).

This is nice, because we can utilize the short exact sequence (1) for X = YΓ to
produce the Eichler-Shimura map. Note after descent, we have a short exact sequence
(3)

0 → ωYΓ

ι−→ UYΓ
⊗R OYΓ

→ ω−1
YΓ

→ 0.

For notational simplicity, we henceforth replace all subscripts YΓ with just Γ, i.e., we
denote ωΓ := ωYΓ

, UΓ := UYΓ
, Ω1

Γ := Ω1
YΓ
, and OΓ := OYΓ

.

But note from the construction of Equation 1 that this sequence is exact from the
Hodge decomposition for n = 1, so in particular, it is locally split. Therefore, taking
the kth tensor power preserves exactness, and we have an injection

ιk : ω⊗k
Γ ↪→ Symk

R UΓ ⊗R OΓ.

Furthermore, Ω1
Γ is a line bundle on YΓ, hence locally free, so tensoring by it preserves

exactness. This means we get an inclusion

ιk ⊗ idΩ1 : ω⊗k
Γ ⊗ Ω1

Γ ↪→ Symk
R UΓ ⊗R Ω1

Γ.

This induces an inclusion on the global sections. The long exact sequence for de

Rham cohomology on XΓ further gives a connecting map H0(YΓ, Sym
k
R UΓ ⊗R Ω1

Γ)
δ−→

H1(YΓ, Sym
k
R UΓ ⊗R C), hence in total we have the composition

H0(YΓ, ω
⊗k
Γ ⊗ Ω1

Γ)
ιk⊗id
↪−−−→ H0(YΓ, Sym

k
R UΓ ⊗R Ω1

Γ)
δ−→ H1(YΓ, Sym

k
R UΓ ⊗R C).

The ⊗RC at the end means the H1 on the right is equipped with an action of complex
conjugation. Applying complex conjugation to the first term (the space of meromorphic

modular forms) gives us a map H0(YΓ, ω
⊗k
Γ ⊗ Ω1

Γ) → H1(YΓ, Sym
k
R UΓ ⊗R C), hence we

get the map

H0(YΓ, ω
⊗k
Γ ⊗ Ω1

Γ)⊕H0(YΓ, ω
⊗k
Γ ⊗ Ω1

Γ) → H1(YΓ, Sym
k
R UΓ ⊗R C).
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Pre-composing with the natural inclusion H0(XΓ, ω
⊗k
XΓ

⊗ Ω1
XΓ

) ↪→ H0(YΓ, ω
⊗k
Γ ⊗ Ω1

YΓ
)

gives us the Eichler-Shimura map

(4) ESΓ : Sk+2(Γ,C)⊕ Sk+2(Γ,C) → H1(YΓ, Sym
k
R UΓ ⊗R C).

As in 1.2, one can define the interior cohomology group H1
! (YΓ, Sym

k
R UΓ ⊗R C) ⊂

H1(YΓ, Sym
k
R UΓ ⊗R C). We justify that, as in our original statement of the Eichler-

Shimura isomorphism, the image of ESΓ lives in the interior cohomology part.

Lemma 5.23. Given the map ESΓ above, its image is contained in H1
! (YΓ, Sym

k
R UΓ⊗R

C).

Proof. By identifying our local system Symk
R UΓ with L(n,R)

Γ
(amounting to choosing

a basis of R2 locally, which provides a basis everywhere via action by SL2(R)), we can
recover the explicit form of f as an element in H0(YΓ, Sym

k
R UΓ ⊗R Ω1

Γ) as in §2.

f 7→ ωf := (X − zY )k ⊗ f(z) dz.

The connecting map for de Rham cohomology is explicitly given by

H0(YΓ, Sym
k
R UΓ ⊗R Ω1

Γ)
δ−→ H1(YΓ, Sym

k
R UΓ ⊗R C)

ωf 7→
(
c 7→
ˆ
c

ωf

)
.

For each cusp s ∈ Γ\P1(Q), denote D∗
s as some sufficiently small punctured open disk

around s in YΓ. The connecting map commutes with restriction, so to show δ(ωf ) ∈
H1

! (YΓ, Sym
k
R UΓ ⊗R C), it suffices to show that δ

(
ωf |D∗

s

)
vanishes for each cusp s. But

H1(D
∗
s ,Z) = π1(D

∗
s) is generated by a loop around s, hence for some loop σ generating

π1(D
∗
s), it suffices to show that

´
σ
ωf = 0.

Let γ ∈ SL2(R) such that γs = i∞. Since s is assumed to be a regular cusp, we have
γΓsγ

−1 = ( 1 hZ
0 1 ) for some h > 0. Thus, after sending s to i∞ via conjugation by γ, we

have that a loop around s = i∞ generating π1(D
∗
s) must lift in H to a path from a+ ib

to a + h + ib for some large enough b ≫ 0 and a ∈ R. But since f is a cusp form, it
decays exponentially as b → ∞, hence

lim
b→∞

ˆ a+h+ib

a+ib

ωf = 0

and the conclusion follows. □

With this, we can restrict the image of ESΓ to the interior cohomology. By doing so,
we claim that the map is an isomorphism.

Theorem 5.24 (Eichler-Shimura isomorphism). The map

ESΓ : Sk+2(Γ,C)⊕ Sk+2(Γ,C) → H1
! (YΓ, Sym

k
R UΓ ⊗R C)

is an isomorphism.
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After translating this map to the “classical” setting in the first half of this exposition,
one can prove injectivity as in §3. We concern ourselves, then, with proving surjectivity
in the final section.

6. Proof of Surjectivity, Version 2

Given injectivity, it suffices to prove the dimensions (over R) on both sides agree, or
in other words

4 dimCH
0(XΓ, ω

⊗k
XΓ

⊗ Ω1
XΓ

) = 4 dimC Sk+2(Γ,C)

= dimR

(
Sk+2(Γ,C)⊕ Sk+2(Γ,C)

)
?
= dimR H

1
! (YΓ, Sym

k
R UΓ ⊗R C)

= 2 dimC H
1
! (YΓ, Sym

k
R UΓ ⊗R C)

= 2 dimR H
1
! (YΓ, Sym

k
R UΓ).

The advantage of having defined modular forms as some zeroth cohomology is that
computing its dimension is immediate from Riemann–Roch.

Theorem 6.1 (Dimension of Space of Cusp Forms). Let g and c denote the genus and
number of cusps of XΓ, respectively. For k ≥ 0, we have

dimC Sk+2(Γ,C) = (k + 1)(g − 1) +
kc

2
.

Proof. It is standard that deg Ω1
XΓ

= 2g − 2 (it is the canonical bundle, since XΓ is a

curve). From the Kodaira-Spencer map KSXΓ
: ω⊗2

XΓ

≃−→ Ω1
XΓ

(cusps), we see that

2 degωXΓ
= 2g − 2 + c

=⇒ degω⊗k
XΓ

= k
(
g − 1 +

c

2

)
=⇒ deg

(
ω⊗k
XΓ

⊗ Ω1
XΓ

)
= (k + 2)(g − 1) +

kc

2
.

When degωXΓ
> 0, Riemann–Roch gives us the desired result, so it suffices to show

that this inequality must be true.

Since c ≥ 0, we see that at best, degωXΓ
≥ −1. If degωXΓ

= −1, then g = 0 and
c = 0, which is only possible if XΓ ≃ P1

C. But we know XΓ admits H as its universal
cover by construction, so this is not possible. If degωXΓ

= 0, then we either have
(g, c) ∈ {(1, 0), (0, 2)}. The latter situation implies XΓ ≃ P1

C again and YΓ is the sphere
with two points removed. We have π1(YΓ) ≃ Z, but this should agree with Γ modulo
its elliptic and parabolic elements, all of which have finite order. But Z, embedded into
SL2(R) as ( 1 hZ

0 1 ), does not have finite covolume in SL2(R), so this cannot be possible.
Finally, if (g, c) = (1, 0), thenXΓ is an elliptic curve, whose universal cover is C (namely,
not H). □

Corollary 6.2. There are no modular forms of negative weight, i.e., for k < 0,

H0(XΓ, ω
⊗k
XΓ

) = 0.
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Proof. This is a direct consequence of degωXΓ
> 0, as established in the proof above. □

We now turn our attention to the interior cohomology group. It remains to show

dimR H
1
! (YΓ, Sym

k
R UΓ) = 2(k + 1)(g − 1) + kc.

Remark 6.3 (Notation). From now on, we denote hi
∗ (for ∗ = c, !, ∅) as dimR H

i
∗. Fur-

thermore, as all sheaves will be the local system Symk
R UΓ, we will suppress it, so hi

∗(X)

should be understood as dimR H
i
∗(X, Symk

R UΓ) unless otherwise specified.

Recall from §1.2 that we have the long exact sequence

0 H0
c (YΓ, Sym

k
R UΓ) H0(YΓ, Sym

k
R UΓ)

⊕
s∈Γ\P1(Q) H

0(D∗
s , Sym

k
R UΓ)

H1
c (YΓ, Sym

k
R UΓ) H1(YΓ, Sym

k
R UΓ)

⊕
s∈Γ\P1(Q) H

1(D∗
s , Sym

k
R UΓ)

H2
c (YΓ, Sym

k
R UΓ) H2(YΓ, Sym

k
R UΓ)

⊕
s∈Γ\P1(Q) H

2(D∗
s , Sym

k
R UΓ)

We will boil our proof down to three lemmata. We state them below, then show how
they imply our desired equality on h1

! (YΓ), then prove each lemma separately.

Lemma 6.4. Let χ(X,F) be the Euler characteristic of F as a sheaf on X. Then,

(1) χ(YΓ, Sym
k
R UΓ) = (k + 1)(2− 2g − c),

(2) h0(D∗
s) = h1(D∗

s) = 1, and
(3) h0(YΓ) = h2(YΓ) = h2

c(YΓ) = 0.

Assuming Lemma 6.4, the proof of surjectivity goes as follows. We seek to compute
h1
! (YΓ) = h1

c(YΓ) −
∑

s h
0(D∗

s). From (3), we can truncate the cohomology long exact
sequence and get ∑

s

h0(D∗
s)− h1

c(YΓ) + h1(YΓ)−
∑
s

h1(D∗
s) = 0.

From (2), this implies h1
c(YΓ) = h1(YΓ). Thus, we have

h1
c(YΓ) = h1(YΓ)(from above)

= h0(YΓ) + h2(YΓ) + (k + 1)(2g − 2 + c)(by (1))

= (k + 1)(2g − 2 + c),(by (3))

and then (2) again gives us

h1
! (YΓ) = h1

c(YΓ)−
∑
s

h0(D∗
s) = (k + 1)(2g − 2 + c)− c = 2(k + 1)(g − 1) + kc

as desired.
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Proof of (1). We first show χ(YΓ, Sym
k
R UΓ) = (k + 1)χ(YΓ,R), then show χ(YΓ,R) =

2− 2g − c.

We construct a nice triangulation T of XΓ as in the beginning of the proof of Propo-
sition 4.4, in particular one where all cusps are included among the vertices. We then
consider the open cover U• = {Ui}i∈I of YΓ consisting of the following open subsets:

• the interiors of all triangles in T
• pairwise disjoint tubular neighborhoods of each edge of T with the vertices
removed

• small open balls around each non-cusp vertex in T

As all opens and their finite intersections are contractible, U• is a “good” cover for
Čech cohomology. Note that, as expected fromH3 vanishing on a curve, any intersection
between four open sets is empty, so the associated Čech complex only has terms up to
degree 2. By a standard comparison theorem between sheaf and Čech cohomology, we
have

χ(YΓ, Sym
k
R UΓ) = h0(YΓ)− h1(YΓ) + h2(YΓ) = ȟ0(U•)− ȟ1(U•) + ȟ2(U•)

= dimR C
0(U•, Sym

k
R UΓ)− dimR C

1(U•, Sym
k
R UΓ)

+ dimR C
2(U•, Sym

k
R UΓ)

where ȟi(U•) := dimR Ȟ
i(U•, Sym

k
R UΓ) and C•(U•, Sym

k
R UΓ) is the Čech complex for

Symk
R UΓ with respect to the open cover U•. But note the Čech complex only sees the

sheaf locally, so replacing Symk
R UΓ with Rk+1 would not change the terms of the Čech

complex (although it would change the chain maps). In particular, we have

χ(YΓ, Sym
k
R UΓ) =

2∑
i=0

(−1)iȟi(U•)

=
2∑

i=0

(−1)i dimRC
i(U•, Sym

k
R UΓ)

=
2∑

i=0

(−1)i dimRC
i(U•,Rk+1)

=
2∑

i=0

(−1)i(k + 1) dimR C
i(U•,R)

= (k + 1)χ(YΓ,R).

It is standard that since XΓ is a compact Riemann surface, its Euler characteristic
is χ(XΓ,R) = 2 − 2g. To prove χ(YΓ,R) = 2 − 2g − c, it thus suffices to show that
removing a cusp decreases the Euler characteristic by 1.

The Mayer-Vietoris sequence on the open cover XΓ = (XΓ ∖ {s}) ∪ Ds, for some
small open disk Ds around a cusp s, gives us the relation

χ(XΓ ∖ {s}) + χ(Ds) = χ(XΓ) + χ(D∗
s).
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Note that D∗
s is homotopy equivalent to the unit circle S1, which has Euler charac-

teristic 0. It is also standard that χ(Ds) = 1, so it follows that

χ(XΓ) = χ(XΓ ∖ {s}) + 1,

as desired. □

Proof of (2). We run the same argument in the above proof for D∗
s , namely that the

Euler characteristic of a local system only depends on the rank of the local system, to
obtain

χ(D∗
s , Sym

k
R UΓ) = h0(D∗

s)− h1(D∗
s) + h2(D∗

s) = (k + 1)χ(D∗
s ,R) = 0,

where the last equality follows from D∗
s being homotopy equivalent to a unit circle,

which has Euler characteristic 0. Any H2 of the unit circle will vanish, hence we are
left with h0(D∗

s) = h1(D∗
s).

Finally, we can deduce h0(D∗
s) = 1 from Lemma 4.7, which in the case G = π1(D

∗
s) =

Z, X = R, and π : R ↠ D∗
s ≃ S1 the universal cover of D∗

s gives the isomor-
phisms H i(π1(D

∗
s), Sym

k R2) ≃ H i(D∗
s , Sym

k
R UΓ). We clarify that the π1(D

∗
s)-action

on Symk R2 is induced by the Z-action on R2, where we identify Z with the sta-
bilizer ( 1 hZ

0 1 ) ⊂ SL2(R) of s. But this action clearly has just a one-dimensional
invariant subspace for the induced action on Symk R2, hence for i = 0, we deduce
h0(D∗

s , Sym
k
R UΓ) = 1. □

Proof of (3). For a local system LΓ of finite-dimensional R-vector spaces on YΓ, the cup
product

H i(YΓ,LΓ)⊗H2−i
c (YΓ,L∨

Γ) → H2
c (YΓ,R)

Tr≃ R

is perfect, as it is perfect locally due to Poincaré duality. For LΓ = Symk
R UΓ, we can

use the pairing B in the proof of injectivity (§3) to deduce that Symk
R UΓ is self-dual,

hence we have that

H2(YΓ, Sym
k
R UΓ) ≃ H0

c (YΓ, Sym
k
R UΓ) ⊂ H0(YΓ, Sym

k
R UΓ) ≃ H2

c (YΓ, Sym
k
R UΓ).

Thus, it remains to prove H0(YΓ, Sym
k
R UΓ) = 0 for k > 0. From the proof of (2), this

is the space of Γ-invariants of Symk R2 ≃ L(n,R). For the rest of the proof, we will
utilize the perfect pairing B : L(n,C) × L(n,C) → C given in the proof of injectivity,
§3. From now on, we identify Symk R2 with L(n,R). Choose some v ∈ L(n,R)Γ =
H0(YΓ, Sym

k
R UΓ). We define the complex-valued polynomial

p(z) := B(v ⊗ (zX + Y )k), z ∈ C.

Since B is a perfect pairing, in order to force v = 0, it suffices to show p ≡ 0.
Following Corollary 6.2, it suffices to show p(z) is a modular form with respect to Γ of
negative weight. As p(z) is just a polynomial, it is clearly holomorphic. It thus remains
to check (a) p(z) satisfies the automorphy condition and (b) it is bounded at the cusps.
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Choose some γ = ( a b
c d ) ∈ Γ. By construction, we have v = γv. Furthermore, one

can show explicitly (as we did in class) that B is SL2(R)-equivariant, hence we have

p(γz) = B
(
γv ⊗ ((γz)X + Y )k

)
= B

(
v ⊗

(
(γz)γ−1X + γ−1Y

)k)
= (cz + d)−kB(v ⊗ ((az + b)(dX − cY ) + (cz + d)(−bX + aY ))k)

= (cz + d)−kB(v ⊗ (zX + Y )k)

= (cz + d)−kp(z),

demonstrating (a). The boundedness condition (b) follows from the facts that p(z) is
a polynomial yet, by (a), it is invariant under a translation z 7→ z + h (where ( 1 h

0 1 )
generates the stabilizer of i∞ in Γ). In fact, this forces p(z) to be constant, and the
automorphy condition requires this constant to be 0. □
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