EICHLER-SHIMURA ISOMORPHISM

HAHN LHEEM
CONTENTS
1. Set-Up 1
1.1. Modular Forms 1
1.2.  Interior Cohomology 3
2. Eichler-Shimura Map 3
3. Proof of Isomorphism I: Injectivity 5
4. Proof of Isomorphism II: Surjectivity 7
4.1. Dimension of Space of Cusp Forms 7
4.2.  Comparing Sheaf to Singular Cohomology 12
5. Modular Forms as Global Sections 16
5.1.  Relative Elliptic Curves 16
5.2. Kodaira-Spencer Map 19
5.3.  Universal Elliptic Curve 19
5.4. Descent to Modular Curves 21
5.5. Modular Forms and the Eichler-Shimura Map 22
6. Proof of Surjectivity, Version 2 25
References 29

1. SET-Up

Throughout, we fix a congruence subgroup I', meaning a subgroup of SLy(Q) such
that (I' : T'(NV)) has finite index for some N € Zs,. We denote Yr = I'\H and
Xt = I\H*, where H* := HU P{(Q).

1.1. Modular Forms. Fix a weight k € Z-. (In fact, the Eichler-Shimura isomor-
phism will require & > 2.) We will define the space of modular forms (resp., cusp forms)
of weight k with respect to the congruence subgroup I'.

Modular forms with respect to I' are holomorphic functions on H obeying a certain
invariance (“automorphy”) property, which we now describe. For each weight k € Z,
the space of holomorphic functions f : H — C admits a right GL3 (Q)-action: given
such an f and o = (2 %) € GL] (Q), define the action by

flra(z) = (det a)lk/2j(oz,z)_kf(az),
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where j(a, 2) == cz +d and az is the action of GL; (Q) on H by linear fractional trans-
formations. A modular form of weight k£ with respect to I' must satisfy the automorphy
equation flpy = f for all v € I'.

Modular forms must also be “holomorphic” at the cusps. Let s € P}(Q) and choose
some 7y € SLy(Q) such that vy(ico) = s. For any z € H, denote I', as the stabilizer of z
in I'. We then have

7_1F57 : {:l:IQ} = (7_1P7>ioo ’ {:I:I2}

C SLy(Z)ime = = (é ?)

_ 1 hZ
= v 1F37~{i[2}:i(0 1)

for some h > 0. In the case where k is odd, we say that the cusp s is regular if
v~y is generated by (§#), and we call it irregular otherwise. This distinction will
be important in computing the dimension of the space of modular forms.

Let 8 € T such that v '8y = (3 #). On the one hand, we have by definition

(Flenle(§1)(2) = fley(z + h).
On the other hand, noting § € I', we have

Flnle(3 ) = (Flenley™ By = Fli,

hence f|xy(z + h) = f|ry(2). This means we have a Fourier expansion of f|;y around
z = s in the form

Flv(z) = 3 calfos)e™

n=—oo

Definition 1.1 (Modular and Cusp Forms). Let k € Z-( and I' a congruence subgroup.
A modular form of weight k£ with respect to I' is a holomorphic f : H — C such that

(1) It satisfies the automorphy equation for I', namely f|,y = f for all v € T,
(2) For each cusp s of I' and v € SLy(Q) such that y(ico) = s, the Fourier expansion
of flxy at z = s as given above satisfies ¢, (f,s) = 0 for all n < 0.

We say a modular form (of weight k£ with respect to I') is a cusp form (with the same
adjectives) if ¢, (f,s) = 0 for all n < 0 in the Fourier expansion at the cusps.

We denote M (I') (resp., Sk(I")) as the space of modular (resp., cusp) forms of weight
k with respect to I'. Note that both carry a natural C-vector space structure, although
for the Eichler-Shimura isomorphism, we will view them as R-vector spaces.

One important feature of Sg(I") is that it has an inner product, called the Petersson
inner product. More generally, for f € Si(I') and g € M(I"), we define

oo = [ 1)@ W
Yr Yy

where z = = + 4y. It is evident that (-,-); is a non-degenerate R-bilinear form, and
positive-definite Hermitian as an inner product on Si(I).

Y
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1.2. Interior Cohomology. Let L be a discrete left I'-module, and define L as the
sheaf of continuous sections of the projection I'\(H x L) — I"'\H. We will now describe
the exact sequence

0— H!l(YFaLF> — Hl(YFaLF) — Hé(YFaLF)

between interior cohomology, the usual sheaf cohomology, and boundary cohomology.

Let F € Sh(Yr). Let {¢;} be the cusps of Xr, let D;. C Yr be a punctured open
neighborhood around ¢; homeomorphic to the punctured open disk D(0, )*, and denote
D, = |_|Z D, . Denote K. = Y1\ D, and let Fx,_ be the sheaf on Y whose sections have
support contained in K,. If j. : D. < Yr is the natural inclusion, then we have the short
exact sequence 0 — Fr, — F — jojiF — 0. Denoting Hj (Yr, F) = H'(Yr, Fk.),
we have the long exact sequence

o= H™ YD, F) = Hye (Yp, F) = H'(Yr, F) = H(D:, F) = Hi (Y, F) — - -

We now define the compactly supported cohomology and boundary cohomol-
ogy to be

H(Yr, F) = liy Hy_(Yr, F)
Hj(Yr, F) = lig H'(D.., F),

where the directed system for both consists of maps in the direction of decreasing ¢.
Taking the direct limit of the long exact sequence above with F = L, and noting that
direct limits preserve exactness, we get the exact sequence

Hy(Yr, Ly) — H:(Yr, Ly) — H'(Yr, Ly) — Hy(Yr, Ly).

Finally, we define the interior cohomology, denoted H{(Yr, L), as the image of
the map H!(Yr, Ly) — H'(Yr, Ly). We then have the desired short exact sequence

0 — H(Yr,Ly) — H'(Yr, Ly) = Hy(Yr, Ly).

2. EICHLER-SHIMURA MAP

We now construct the Eichler-Shimura map between modular forms of weight k with
respect to I' and a certain first cohomology group of Yr. Afterwards, we will prove
that this map is in fact an isomorphism of R-vector spaces. (The map being Hecke-
equivariant was proven in class.)

Let n = k — 2. For the cohomology side of the Eichler-Shimura map, we will set
L = L(n,R) to be R[X,Y],, the space of homogeneous polynomials in R[X,Y] of
degree n. Upon specifying an R-basis {e1,es} of R? we have an R-vector space iso-
morphism L(n,R) ~ (Sym" R?)" where XY™ s ¢}’ ® eg(nﬂ'). Note that Sym”™ R2,
seen as an R-subspace of (R?)®", has a natural SLy(R)-action induced from the stan-
dard representation (i.e., left-multiplication) on R?. Passing this SLy(IR)-action over

the specified isomorphism above gives an SLs(R)-module, hence a I'-module, structure
for L(n,R).
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Since L = L(n,R) is flat over R, tensoring L over R with the holomorphic de Rham
complex

0—=C— Oy = Q. —0
yields the short exact sequence
0— L(n,C). — L(n,R) ®g Oy, = L(n,R)  @r Dy, — 0,
where L(n,C) = C[X,Y], and R is the constant sheaf for R on Yr. Note we have a

natural map
(1) M(T) — H°(Yr, L(n, R)r ®rR Q%,F)
[ wi(z) = (X —2Y)"® f(2)dz,

where, given a basis {e;, es} of R? and the corresponding basis {e! ® e ™" : 0 <i < n}
for R™*1 the term (X — 2Y)" is the product

(X", X"y ... Y™
(=0 () :
(—1)" 1

We also have the coboundary map from the de Rham complex (post-tensoring)
(2) H°(Yr, L(n,R) ®g Q}) = H'(Yr, L(n,C),).
Composing the maps from (1) and (2), we get a natural map

M (T) = H' (Y, L(n,C) )

— T

f(2) = [wy] = d(wy).

Denoting My (I') = {f(2) : f € My(I")}, the above map naturally extends to the
Eichler-Shimura map

ES : (') ® M (T) — H'(Yr, L(n,C) ).

We examine more closely the image of cusp forms under this map. Because f € Si(T")
vanishes at the cusps, so does wy, hence we have w; € HS(YF,L(n,R)F ®r Q)"
Since sheaf cohomology commutes with direct limits [Sta25, Tag 0739], we have [wy] €
H!(Yr,L(n,C)_), which maps into H!(Yr, L(n,C)_) € H'(Yr,L(n,C)_). Thus, the

— T — T — T

Eichler-Shimura map restricts to

ES : Si(I) @ 8y(T) = H (Yr, L(n,C).).

The objective of the proceeding two sections is to prove the following theorem.

Theorem 2.1 (Eichler-Shimura Isomorphism). The Eichler-Shimura map

ES: Si(I') @ My(T) — H'(Yy, L(n,C) )

— T

IThis justification is incomplete. See the end of §5.5 for a complete explanation.


https://stacks.math.columbia.edu/tag/0739

EICHLER-SHIMURA ISOMORPHISM 5

15 an isomorphism of R-vector spaces, and it restricts to an isomorphism

ES : Si(I) @ 8y(T) = H (Yr, L(n,C).).

Furthermore, these two isomorphisms are Hecke-equivariant.

Remark 2.2. The Hecke-equivariance was proved in class, so we will omit its proof in
this exposition.

3. PrROOF OF ISOMORPHISM I: INJECTIVITY

Simply put, we seek to prove ES is both injective and surjective. For injectivity, we
primarily follow the argument in [Shi71, §8.2] (likewise [Hid93, §6.2]). For surjectivity,
we provide two proofs, the first originating from [Shi71], and both presented in [Hid93].

Our method of proof will be to construct a pairing A : Sx(I') x My(I') — C which
factors through the Eichler-Shimura map. The result will follow from the fact that A
is non-degenerate, which we will show by expressing A in terms of the Petersson inner
product.

The construction of such a pairing begins on the side of cohomology, where for a
general I'-module L we have a cup product [Hat02, p.209]

H,(Yr,Lp) x H'(Yr, Ly) = H?(Yr, Ly ® Ly).

Note that on differential forms, the cup product in de Rham cohomology is simply
the wedge product.

In our setting of interest L = L(n,C), we seek C-linear maps H?(Yr, Ly ® Ly) N

H?(Yr,C) I €. With such maps, we can then define a pairing A on Sk(T) x Mg(T)
by the following composition.

dx() S

2 Si(D) x M,(T)
LN H!(Yr,L(n,C) ) x H'(Yr, L(n,C) )

— T — T

= H(Yr, L(n,C) ® L(n,C) )

A Si(T) x My,(T)

2, H2 (%, C)

Tr

— C.

We first define the map B; it suffices to construct a C-bilinear map (which, abusing
notation, we also call B)
B:L(n,C)® L(n,C) — C.
In the case n = 1, we have a very natural choice for B given by the determinant
det

L(1,C) ® L(1,C) %5 ¢

(aX + bY, X +dY) — det (Z fz) .
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Note we can write the determinant as

s e (4 D)

Specify an isomorphism L(1,C) ~ (C?) (i.e., choose a basis {e;, es} of C?), and let
©; be the linear operator on C? with matrix ( 0 | &) with respect to {e;, es}. Let ©,, be
the linear operator on Sym” C? induced from @1, meaning it has matrix representation
with respect to {e! ® b '} as

Identifying L(n,C) ~ (Sym™C?)¥ means ©,, induces the linear operator ©,T on
L(n,C). We now define our map B : L(n,C)®? — C as

n n —1
B (Z XYY" @) ijjY”‘j> (a;)TO;T Z b (— < k) :
i=0 Jj=0

Remark 3.1. Because this computation will be used later, we note here that

B((X —2Y)"® (X -2Y)") = i(—l)k (Z) Zk(_l)n_k< n k)z”—k(_l)n—k <Z>-1

The trace map is simply given by the isomorphism
H*(Yr,C) ~ H*(Yr; C) ~ Hy(Yr;C) ~ C,

where HZ?(Yr;C) is compactly supported singular cohomology, the first isomorphism
is a standard comparison theorem between sheaf and singular cohomology, the second
follows from Poincaré duality, and the last comes from Y being connected.

More concretely, we can view H?(Yr,C) in terms of de Rham cohomology, so every
element is represented by some 2-form on Y with compact support. Then, the trace
map amounts to taking the integral over Yr, i.e.,

() = | .

We now show that A is non-degenerate — in fact, we show that it agrees with the
Petersson inner product up to constant. Using the above interpretation of the trace, we
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have the following concrete description of the pairing A: for f € Si(I") and g € M (),
00~ [ wne
Yr
_ / B((X = 2Y)" @ (X —2Y)") - f()g(2) d= A d=
Yr

:/Y<_2¢y)“f<z)ﬁ.(—2¢)dmdy

£ oyt [ p()glayt Y
Yr Yy

= (=20" " {f.9)r-

This implies that the Petersson inner product, which is non-degenerate, factors
through the Eichler-Shimura map, and injectivity of the latter follows.

4. PROOF OF ISOMORPHISM II: SURJECTIVITY

To show that ES is an isomorphism, we are left to prove that the dimension over R
on both sides are the same. Note that L(n,R) ®g C = L(n,C) , and so proving this
for the restricted Eichler-Shimura isomorphism amounts to showing

2dime Si(T') = dimg H;' (Y, L(n,R) ).

4.1. Dimension of Space of Cusp Forms. We start with the left side, which we
compute via Riemann-Roch. The key is to interpret cusp forms as global sections of
some line bundle, which we describe by its associated divisor.

Denote Ay (T") as the space of automorphic forms of weight & with respect to T, i.e.,
the space of functions satisfying the definition of a modular form (of weight £ w.r.t. T'),
but with the “holomorphic at the cusps” condition replaced with “meromorphic at the
cusps.”? We first want to define a divisor associated to any 0 # ¢ € A(T). For each
p € Xr, we will define a valuation-at-p, denoted v,, on Ag(I).

Suppose first that p € Y. Lift p to some py € H, and let A : H — D (where D is
the unit disk) be a biholomorphism sending py — 0. If #Stabr(py) = e, then the map
locally around pg + p given in coordinates by z — 2¢ is a holomorphic homeomorphism,
hence t := \(z)¢ is a uniformizer at p. We can then define

1
Up(qb) = gv(zfpo) (Qb) .

We define the valuation similarly at the cusps. If p € T\P'(Q), with lift py € P1(Q),
then we can write a Fourier series expansion ®(g)) for ¢y at ico as in §1.1, where
7(i00) = po, qn = €>*/" and p = 1/2 only when k is odd and p is an irregular cusp.
Then, we naturally define

2We assume —I5 ¢ I for odd k to ensure A (') # 0.
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We can now define

divg:= Y v,(¢)-p.  0#¢ € A(D).

pEXT

Let {q1,...,qu} (resp., {qi,...,q,}) be the regular (resp., irregular) cusps of I'. Note
that if a cusp s is irregular and k is odd, then the Fourier expansion of f|py, where
v € SLy(Q) satisfying v(ico) = s, is a power series in e™"*/" whereas otherwise it is a
series in e?™#/" As a result, we can realize Sy (") as a subspace of A.(I') via

Su(T) = {¢p € Ap(T) : d%v<b > ZZZI ¢+ Z?:ul' ¢;}  keven

{p € A(D) :dive > 370 ¢+ 505, ¢} Kk odd.
Let K denote the field of meromorphic functions on Xr. As Xr is compact, it follows
that A (T") is one-dimensional over K, meaning that given a fixed 0 # ¢y € Ax(T") and

some ¢ € Ag(T"), there exists some f € K such that ¢ = f - ¢. Denoting B = div ¢y,
the above can be formulated as

Si(T) = {feK:divf>-B+ Z;‘:l q; + Z;':l ¢} keven
K divf2-B+ ¥ 4+ 2g) ko

Remark 4.1. One should first show that A (') # 0 for £ > 2. We do not demonstrate
this fact here, but [Shi71, Prop. 2.15] is the relevant statement.

Note that for any f € K, its associated divisor div f cannot have non-integer coeffi-
cients, so we can take the floor |-] of each coefficient. If D =} ¢, p € Q ®z Div Xr,
then denote |D| = 3 |¢,] - p € Div Xr. Denoting B’ = B — > ¢q; — >_q;, we then
have, in the notation of Riemann-Roch,

dime Sp(T) = £([B]).

Proposition 4.2. Suppose k is even. Let {ey,...,e,} be the elliptic points of ', with

g; having order e;. Denote {q;}i_, and {q] ;":1 as the regular and irreqular cusps,

respectively, as above. For any 0 # ¢ € Ai(T"), we have
' ' L r 1 i u’ /
dive =divn + 5 (Z (1 — e_1> .Ei+qu+qu> ;
i=1 7j=1 7j=1
where 0 = ¢(z)(dz)*/?.

Proof. It suffices to check the evaluations of v, agree on both sides for all p € Xr. We
start with the non-cusps p € Yr, in which case the desired statement is

(@) = + 5 (1- 1)

e

Take t = A(2)¢ the uniformizer at p as defined in the beginning of this subsection.
Then, we have dt/dz = e - \(2)¢" - d\/dz, and so

1 1
vp(dt/dz) = . Vs pole - M2) - dN/d2) =1 — o
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Noting by definition of ¢ that v,(dt) = 0, we can compute
(1) = vp(6(2)(d2)"?) = v, (B(dt)*/?(dz/dt)*?)

k k 1
= vy(9) + §Up(dz/dt) = vy(0) — 5 (1 - g) ’

and the desired equation follows.

Now suppose p € Xr—Yr is a cusp. The desired statement here is v,(¢) = v,(n)+k/2.
Taking again 7 such that y(ico) = p and ¢, = €2™*/" if we define coordinates w = vz
and denote ®(gy,) as the Fourier series expansion of @[y at ioco, we get

P(w)(dw)*/? = |y(2)(dz)*/?
= ®(q)(dq)**(dz/dq)""”

e (2mi O\ TP
= O(q)(dg)*/? - <7 : q) -
Thus,

up(1) = vg (@(q) (2mi/h) " 2q 72 (dg)"?) = v (@) —

and the conclusion follows. O

k k
2

From this, one can deduce the following statement for all k& > 2.

Corollary 4.3. Maintain the notation as in Proposition /.2 above. Let g be the genus
of Xr. Then, for all k > 2 and 0 # ¢ € Ai('),

deg(div ¢) = g ((29—2)+Z (1 - l) -I—u—l—u’) .

e
i=1 v

Proof. The case for k even is immediate from Proposition 4.2. For k odd, we can still
1

deduce it from the above proposition via the observation div(¢) = 3 div(¢4?). O

The following proposition has two purposes. First, it shows that deg(div¢) > 0 for
0 # ¢ € Ai(T"). Second, the beginning construction in its proof is necessary to study
the singular (in fact, simplicial) cohomology of Y1 and its modifications. In this spirit,
we will only give the setup and general idea of the proof, leaving the details for [Shi71,

Theorem 2.20].

Proposition 4.4. Denote g as the genus of Xr, m the number of inequivalent cusps of
I, and {ey,...,e.} the orders of the inequivalent elliptic points of I'. Then,

Note that as the left is a volume computation, it must be strictly positive, and hence
Corollary 4.3 above implies that deg(div ¢) is always positive.
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Proof. By Radd’s Theorem (see [DM68] for a proof), any compact Riemann surface
can be triangulated. Indeed, we can take a basis of the homology group H;(Xr;R) to
get a 4g-sided polygon represented by aibiay 'by" - - agbya bt so there are 2g edges
given by {a;,b;}. Without loss of generality, this polygon can be arranged such that
all elliptic points and cusps are in the interior of the polygon. One can think of this
polygon as a simplicial complex on Xy. We can then add all elliptic points and cusps
as O-simplices, and after fixing one vertex of the polygon, we attach non-intersecting
1-simplices in both directions between the vertex and each of the elliptic points/cusps.
The resulting polygon now has 4g + 2m + 2r sides. We finally add an arbitrarily small
circle around each elliptic point/cusp.
Upon lifting to H*, we can identify this polygon with a fundamental domain A of I"
in H*. By construction, the boundary can be written in the form
2g+m+r m+r
i=1 i=1
where the s;’s correspond to the sides of the polygon, v; € I' are chosen to cover all
sides in the reverse direction, and the t;’s are the small circles.

Denote n = y~'dz (where z = m;y), so that dn = y~2dxdy. From the theorem
statement, we are interested in computing fYr dn. By our above construction and
Stoke’s Theorem, we can write the volume as

Yr)= i dn= i .
M( F) radiu;gi)—m/A g radiuégzl-)—m /BA m

In terms of the boundary decomposed as above, we have that

2g+m-+r m-+r

/Mn— Zl /Si(n—m%)ﬂLZI

Jor

The main steps in the remainder of the proof rely on the following facts:
(1) For all v € SLy(R), we have noy —n = —2i - dlog(j(7, 2)).
(2) If 0 # ¢ € Ay(T) and & = d(log ¢), then for any v € T', we have oy — & =

2 - d(log j(v, 2))-
(3) The computations relating v,(¢) and v,(¢(z)dz) (for 0 # ¢ € Ay(T")) from the

proof of Proposition 4.2 in the case k = 2.

Using these, once can rewrite each summand on the right as terms appearing in the
equation for Corollary 4.3. O

We now split into three cases: (1) k=2, (2) k> 2 even, and (3) £ > 3 odd. We will
rely on the above computation.

k = 2: Denote M' = MY as the sheaf of meromorphic differential 1-forms on Xr. As
Xr is a curve, Riemann-Roch tells us that dime I'( X, ./\/ll) = g the genus of Xr.
In the case k = 2, we claim that the map f — f -dz is an (obviously C-linear)
isomorphism between Sy(I") ~ I'(Xt, M*). This is an immediate consequence of
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k > 3 odd:
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Proposition 4.2: we have div(f(z)dz) > 0iff div(f) > > q;+>_ ¢} iff f € Sy(').
We conclude dim¢ Sy(I') = g.
Recall we defined B’ = B -} q; — > _ ¢}, and we have S,(I') ~ L([B']). We will
invoke Riemann-Roch to compute the dimension of the right. We first write B’
in the form of Proposition 4.2. Letting £ = ¢o(dz)*/? (where B = div ¢y), the
proposition allows us to write

=B - Zq] Zq]—leéf?o qu qu

:div(§)+§ (Z (1—6%) .gi+Zq]+ZqJ> qu an

i=1

Letting m = u + u’ denote the total number of inequivalent cusps and n = k/2
for simplicity, we can compute directly from the above

deg(| B']) = deg(div€) + (n — D)m + Z {@J

= —m+n(29 —2+m) +ZL—_1)J

€;

where deg(div¢) = ndeg(div(dz)) = n(2¢g — 2) as Xr is a curve. Noting that
In(e; —1)/e;] > (n—1)(e; — 1)/e;, we obtain

deg(|B']) >29—2+4 (n—1) <2g—2+m+2(1—€i)).

By Proposition 4.4, the latter term is positive, hence deg|B’| > 2g — 2. By
Riemann-Roch, this forces (| B']) = deg| B’| —g+1. Substituting back k = 2n,
we conclude

dime Sp(T) = (k —1)(g — 1) + (g - 1) m+§; {%J .

The proof is similar enough to the above case k > 2 even, so we do not write out
all the details here. The complete proof can be found in [Shi71, p.47]. The key is
to use Proposition 4.2 for ¢ = ¢§ and n = ¢(dz)*, and note div(¢o) = % div(e).
One small but important detail is the assumption that —I5 ¢ I' for k£ odd (this,
recall, was to guarantee A(I") # {0}), so notably each order e; must be odd.
In the end, one can attain

dime Su(0) = (k= 1)(g - 1+ W72 L) 5 Ko=)

2 2 , €;
=1

Note that using the exact same methods, one can compute the dimensions of M (T"). Tt
should not be of much surprise that each regular cusp contributes an extra dimension.
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Explicitly, we have dime¢ My(I') = g + L,,.0(m — 1) and

(/f—l)(g—l)+§~m+Z::1LM k> 2 even

2e;

dim(c Mk-(F) = ’

(k—1)(g— 1) + uk 4 2D | s —’“%g”J k>3 odd.

4.2. Comparing Sheaf to Singular Cohomology. We now turn to the other side
of the Eichler-Shimura map and compute dimg H}(Yr, L(n,R)F) for x =! (). Our first
objective is to relate these sheaf cohomology groups to singular cohomology, for which
we can compute the dimensions of H' concretely. To pass from sheaf to singular, we

will use group cohomology as a middle man.

Before we traverse between sheaf cohomology and group cohomology, we take time
to nod at ways to go from sheaf to singular directly, or to make the passage through
different means.

The comparison between sheaf to singular in our situation can be made directly. The
general phenomenon at play is the agreement between sheaf cohomology for locally con-
stant sheaves (as is L(n,R)_) and singular cohomology with local coefficients, initiated

==
in [Ste43].

Lemma 4.5. Let L be a discrete I'-module and Ly the locally constant sheaf on Yp
associated to L. Then, for all i > 0, there exists a canonical isomorphism

H'(Yr, Ly) = H'(Yr; L),
where the right is singular cohomology with local coefficients.

For a general proof of this fact, namely when the topological space is locally con-
tractible and hereditary paracompact (meaning every open subset is paracompact), one
may consult [Bel21, §4.3.11].

Proof. Because Yr = I'\H is sufficiently nice (i.e., a metric space, hence paracompact
Hausdorff), one can find a “good cover” U of Y such that H(Yr, Ly) ~ H'(U, Ly). But
in the Cech complex, the “good cover” means all cochains are maps from contractible
open sets, hence they are valued in L. Thus, the Cech complex is exactly the cochain
complex for singular cohomology with local coefficients in L. 0J

One could also largely bypass the discussions of group and singular cohomology
by instead comparing the cohomology of locally constant sheaves with the space of
modular symbols, which we briefly entertain now. Let A = DivP!(Q) and A° its
degree 0 subgroup. The space of (classical) modular symbols of weight k& with respect
to I' is given by

MS},(T) := Homp(A°, Sym*(R?)).

One of the main achievements in the work of Ash and Stevens [AS86] is summarized
in the following theorem.

Theorem 4.6. There is a natural isomorphism of R-Hecke-modules
MS;. (') = H} (Yr, Symg (R?)).
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Although we do not adopt this method of approach, one could use modular symbols
as a bridge between sheaf and group cohomology. Indeed, if we denote {p, ¢} as the
divisor [p] — [q] € AP, then we have a natural map

MS,(I') — HYT', L(n,R))
£ ¢,
e = 7y = ({00, 700}).
One may check this is indeed well-defined, and moreover, its image is contained in
H!T, L(n,R)). [Levll, p.16]
To resume the core thread of the proof, the main bridge between sheaf cohomology

and group cohomology is the following lemma, first proven in Grothendieck’s Tohoku
paper [Gro57] and proven concisely in [Mum74, p.23].

Lemma 4.7. Let G be a discrete group and X be a topological space with a free discon-
tinuous G-action such that every point has a neighborhood which is disjoint from all of
its other G-orbits besides itself. Let'Y be the quotient space of X by the G-action, and
denote m: X — Y as the natural projection map. If F is an injective abelian sheaf on
Y, then ©*F is flasque and T'(X, 7*F) is an injective G-module.

In our situation, we have G = I', X = H, and 7 : H — Y. Let L be a discrete I'-
module, and take an injective resolution 0 — L — Z°. By the lemma, 7{Z* is a flasque
resolution of mf Ly and I'(H, 77Z*) is an injective resolution of L = I'(H, 7fLy). Using
the fact that 7L = Ly (the constant sheaf on H associated to L) and (7r.Ly)" = Ly,
we can produce the following isomorphisms:

H'(T,L) = H' (D(H,mZ°)")
~ H' (0 (Yr, 7 miZ°)")
~ H'(T'(Yr,Z%)
= H'(Yr, Ly).
This applies just the same to the boundary cohomology. Given a sufficiently small
open disk U, C Xt around a cusp s and a lift s € H* of s, there exists an open

neighborhood V around s such that we have a holomorphic homeomorphism I',\V, =
Us, where T', is the stabilizer of s in I'. Thus, the lemma also gives us the isomorphism

H'(Uy, Ly,) ~ HY(T, L).
This yields the following commutative diagram:

0 ———— H(Y,Lp) ——— H'(Yp, Ly) ——— Hj(¥r, Ly)

i ; ;

@S resr r

0 — ker (@361‘\1?’1(@) resFﬂ) —— H'(T, L) — Bserypr #' (s, L)

It follows that the dashed vertical arrow is also an isomorphism.
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For our computational purposes, it is beneficial to describe the kernel in more explicit
terms. First, as the stabilizer of any cusp s in SLy(R) is isomorphic to R x {+15}, we
deduce that I'y is isomorphic, at least in PSLy(Q), to Z. Working over PSLy(Q) if
necessary, we can write I's; = () for some 7, € I's. It follows that every parabolic
element of I" is conjugate to a power of some 7, so we may reduce the subset of parabolic
elements to a set of “representatives,” which we give by P = {r,: s € ['\P}(Q)}.

We now consider the boundary part of the group cohomology exact sequence above.
Note from the definition of a 1-cocycle that any ¢ € H*(T',, L) will satisfy, for all m € Z,

p(rg') = (L+ s+ -+ —1—71-:1_1)@5(775)’

hence ¢ is determined solely by its value on w,. This yields Z'(T's, L) = L. For the
coboundaries, we note that if ¢(m,) = (75 — 1)a for some a € L, then

O(r) = (14 + 7 o(ms) = (1 + -+ 7 ) (m — Da = (17" — 1)a,
so BY Ty, L) = (m, — 1) L.
It is clear from here that the kernel, which we call parabolic cohomology and

denote by HAL(T, L), is the subspace of H!(T', L) consisting of all (equivalence classes
of) 1-cocycles ¢ such that ¢(ms) € (75 — 1)L for all cusps s.

Remark 4.8. Note from the above computation of ¢(77"), which we can extend to all
conjugates ¢(yr™y~1), that we could have considered all parabolic elements and not
just the select subset P. In other words, we also have

HL(T,L) = {[¢] € H'(T,L) : ¢(r) € (7 — 1)L for all 7 parabolic}.

We now pass from group cohomology to singular (rather, simplicial) cohomology.
Denote YF(O) as the open Riemann surface obtained by removing from Xt small, disjoint

open disks around each cusp, and denote H® as the preimage of YF(O) under the natural
projection H* — T'\H*. Then, we can follow the beginning of the proof of Proposition
4.4 to construct a simplicial complex K of H(® satisfying the following conditions:

(S1) K is stable under the I'-action.

(S2) For every cusp s € S, there exists a 1-chain t; of K which maps onto the
boundary of the excluded disk around s.

(S3) There exists a fundamental domain A for the T'-action in H® whose closure
consists of finitely many simplices in K.

With such a simplicial complex K, we can construct the exact sequence in singular co-
homology analogous to the one in group cohomology defining the parabolic cohomology
group HL(T, L).

For i € {0,1,2}, let A; be the R-vector space generated by the i-simplices in K.
Attached to K then is the natural chain complex

0—>A23>A12>A01>R—>0,

where 0 is the usual boundary operator and a is the augmentation map given by adding
the coefficients of the 0-simplices. But this is a free R[I']-module resolution of R, so after
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taking the corresponding cochain complex with coefficients in L, we have a canonical
isomorphism H'(K; L) = H (T, L).

We treat the “boundary part” of the cohomology in a similar spirit. Denote now P
as the set of all parabolic elements in I'. (This should not raise any concerns thanks to
Remark 4.8.) Take any m € P; we established before that m = ym,y~! for some cusp s
and v € I'. Property (K2) dictates that v(ts) must be a 1-simplex of K. The image of
v(t) in A has universal covering space isomorphic to R, which we embed by ¢, into
the universal cover H of A, By definition, the closure m gives a triangulation of
a fundamental domain of I';\¢,(R). We can now define A;(w), for i € {0, 1}, to be the

free R[T";]-module generated by the i-simplices in 7(¢,), giving us the free resolution of
R[T;]-modules

0— A(m) D Ag(m) SR = 0.

The inclusion ¢, induces a natural inclusion of chain complexes Aq(m) < A,, which
collectively gives @, .p Ae(m) — A.. It is a standard fact that free (even better,
projective) resolutions are unique up to homotopy equivalence. Consequently, if F,
(resp., Fo(m)) is the standard R[I']-free (resp., R[';]-free) resolution of R, then we get
induced homotopy equivalences between the various complexes such that the following
diagram commutes:

Applying Homgrj(—, L) everywhere and taking cohomology gives us the desired com-
mutative diagram

0 — HL(T,L) — H'T,L) —— @, H'(Tx, L)

) k

HYK; L) —— @,cp H'(K(m); L)

where H*(K (), L) is understood from the construction to be the cohomology groups
of the cochain complex Homgr,j(A¢(7), L). We denote the kernel of the bottom map
as HL(K; L), and it is evident that there is a canonical isomorphism Hp(K;L) =
HL(T, L).

It now remains to compute dimg H5(K; L) and check it agrees with 2 dim¢ Sy, (T)
when L = L(n,R). Our proceeding computations will heavily rely on the explicit
construction of the simplicial complex K as explained in the proof of Proposition 4.4.

Remark 4.9 (Confession). We did not have time to finish these arguments. However,
we do provide a complete proof of surjectivity in §6, which in the end is roughly the
same argument. There, the proof is slicker because we only concern ourselves with
regular cusps. For the remaining arguments using the above approach, look at the two
propositions and the corollary in [Hid93, §6.1].
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5. MODULAR FORMS AS GLOBAL SECTIONS

We will now give a purely cohomological construction of the Eichler-Shimura map.
Three advantages of this reformulation are (1) it is less ad-hoc, (2) the dimension-
counting arguments as done in the previous section become much easier using results
from cohomology, and (3) one can naturally replace Zariski cohomology with étale
cohomology and begin to construct Galois representations, as is done in [Del71].

The entry point is that, for instance, a cusp form f(z) of weight 2 and level N can
be seen as a holomorphic 1-form f(z)dz on the modular curve X;(/N) which vanishes
at the cusps. In other words, we can realize f € H°(X(N), Qﬁ(l(N)(cusps)). We can

replace Q! with any k' -tensor power to produce cusp forms of weight 2k.

The obvious pitfall here is that we cannot recover modular forms of odd weight in
this manner. Somehow, we need to make sense of “1/2”-forms.

The beautiful answer comes from deformation theory. By seeing the dual of Q§(1 ()
as the (sheaf of sections of the) tangent bundle of X;(/N), and noting that X;(N) is
a fine moduli space of elliptic curves with some level structure [KKM85], one can study

the deformation of elliptic curves and produce a version of the Kodaira-Spencer map,
which will be of the form KS : w®? ~ Q% .\ for some line bundle w on X;(N). We will

then be able to define modular forms of weight & for I';(N) as global sections of w®*.

5.1. Relative Elliptic Curves. By the principle described above, we will be working
in the relative setting, primarily with elliptic curves over an arbitrary analytic space.
We define this explicitly.

Definition 5.1 (S-elliptic curve). Let S be a complex analytic space. An elliptic
curve over S is a proper flat morphism f : E — S of analytic spaces such that its
fibers are complex elliptic curves and it comes equipped with a section e : S — FE, a
group law over S, and an inverse S-morphism which make it an S-group object.

Before we proceed, we recall some important results of higher direct image sheaves.
The following analytic version of the cohomology and base change theorem (see [Har77,
Theorem 12.11] for the algebraic version) will be useful for us.

Theorem 5.2 (Cohomology and Base Change). Let f: X — Y be a proper morphism
of analytic spaces, and let F € Coh(X) be flat over Y. Denote X, = f~'(y) for the
fiber above y and F, = Fl|x,. Fory €Y, consider the natural map

90Z<y) : Rif*(]:)y X0y, k(y) — Hi(vaFy)'

(1) If ©'(y) is surjective, then it is an isomorphism.

(2) If ©'(y) is surjective for all y € Y, then ¢'"'(y) is surjective if and only if
Rif.F is locally free on some open neighborhood U > y. In this case, R'f,F is
of formation compatible with arbitrary analytic base change over U.

We most frequently use this theorem to check that two derived pushforwards are
isomorphic by reducing the statement to a standard isomorphism on cohomology (e.g.,
Poincaré duality) via taking stalks. This is exactly what we do for the following corol-
lary.
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Corollary 5.3. Let f : X — Y be a proper flat morphism of analytic spaces with
connected reduced fibers. Then, the natural map Oy — f.Ox is an isomorphism.

Proof. As f is proper, its fibers X, are compact, which means we have
(Rof*OX)y = HO(Xy’ Ox|x,) = C =~ Oy,,

the first isomorphism following from the theorem above. 0

Let f: E — S be an elliptic curve over S. The relative Hodge complex gives us the
short exact sequence

0— f7'0s = Op 5 Q5 — 0.

The sequence is exact intuitively because h € kerd if and only if h is constant
on each fiber, which is exactly the sections of the inverse image sheaf f~!0g. Note
d: Op = Q /s is surjective only because the fibers of f are elliptic curves, hence

Q3 s = 0. By taking the long exact sequence for derived pushforwards, we get the
exact sequence

0= fuf 705 = £.0p = f.Qps = R f(fT'O0s) = R f.Op.

Because f is surjective, we have f,.f'O0g ~ Og ~ f,Op, where the latter isomor-
phism is from Corollary 5.3. Thus, we can truncate the exact sequence and are left
with

0— f*Q%E/S — R'Yf.(f'0s) = R'f.Op.
Since f,f71Og ~ Og, the relative Poincaré cup product gives us a natural map

R'f,R®p Oy ~ R f,C®R¢ f.(fO0s) = R f.(f~'Os). But on cach fiber E, = f~1(s),
this cup product is just

Hl(ES7 C) ®(C OS,s — Hl(E87 (filos)

5) = H'(E,, 0s.)

which is an isomorphism. Hence, we can replace R! f.(f1Og) with R! f,R®g Og. This
leaves us with the exact sequence

0— f*Q}E/S — R'f,.R®r Os — R f.0p.
This exact sequence on its fibers is just
0 — H(E,,Qp ) — H'(E,,C) » H'(E,,Og,),

which by the Hodge decomposition is a split exact sequence. This means our relative
exact sequence is actually a short exact sequence. We can also replace the last term
R'f.Op with f,(Q/5)" by Serre duality on the fibers.

Denote w = wg = f.Q, /s We can write our short exact sequence in terms of w as
follows:

(1) 0> w— le*K KR Og Lt 0.
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Remark 5.4. Denoting e : S — FE as the identity section, we have a natural map
Q}E/s — (eo f)*Q}E/S = e*f*Q}E/S induced by the S-morphism eo f : £ — E. The
adjunction between inverse and direct image gives a natural map e*Q2}, /s~ 1 /5" But
all stalks on both sides are one-dimensional over C, hence this is an isomorphism. We
may interpret e*Q, /g as the cotangent space of E at the identity, so w™! is understood
to be the relative Lie algebra Lieg(E).

We will investigate the middle term of this short exact sequence, which we can rewrite
as R'f,ZZ ®7 Os. The first property to prove is that R'f,Z is a local system (i.e., a
locally constant sheaf, defined below) of rank 2 free Z-modules.

Definition 5.5 (Local System). Let R be a ring and R the associated constant sheaf.
A local system of R-modules is a R-module M which is locally constant. (If R = Z[I']
is a group ring, we say I'-module instead of Z[I']-module for simplicity.)

Proposition 5.6. Let f : X — S be a proper smooth map with connected fibers of
dimension d. For any torsion-free abelian group G, the sheaf R'f.G is a local system
of G-modules and compatible with base change for i < 2d, and it vanishes for i > 2d.
Furthermore, the natural map G ® R*?f,Z — R* f.G is an isomorphism and R* f,Z
18 a local system of rank 1 free Z-modules.

Remark 5.7. It is clear (at least for G = Z) that G ~ f.G, and then assuming the
locally constant statement, the last statements clearly follow from Poincaré duality.
The other statements crucially make use of Theorem 5.2.

In fact, we can make our life easier by restricting S to be smooth, in which case the
result is clear from Ehresmann’s fibration theorem that f is locally trivial. One can
prove this by reducing to the case where S is smooth by working locally, see [Con05,
Theorem 1.2.1.6].

By construction, R'f,Z is a Z-module, and the proposition confirms it is locally
constant. In special cases, such as Example 5.11 below, it is actually a constant sheaf.
One such class of examples, which gives context to §5.3 below, comes from the following
useful perspective of local systems.

Theorem 5.8. Let X be a topological space with a universal cover T : X = X3 Fiz
some x € X, and denote G = m(X,z). Let R be a ring. There is an equivalence of
categories between the R-modules with an R-linear G-action and local systems of R-
modules, where an G-R-module M corresponds to the sheaf of continuous sections of
the natural projection (X x M)/G — X.

Remark 5.9. By this characterization, it is clear that the sheaf L(n, R)F on Yr is a local
system of free R-modules of rank n + 1.

3Assuming X is connected, locally path-connected, and semi-locally simply connected is sufficient,
for instance.
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5.2. Kodaira-Spencer Map. The final part of our general discussion of S-elliptic
curves is to relate w, which by definition is f,Q}, /g0 1O QL.

Consider an S-elliptic curve f : E — 5. We have the following fundamental exact
sequence of differentials

0— f*Qs = Qp — Qpg =0,

where implicitly the latter two are differentials over the base field C. Dualizing gives
us

0= (Qps)” = ()" = (f1 Q)" =0

The long exact sequence for the derived pushforward gives us connecting map 0 :
fo(F*Q5)Y — R f.(Q5)Y. We can thus consider the following composition

id ®4,

Fo(Qiys) @ fu(£728)Y == fulQiyys) @ R fu(Qpy0)” = R Fu(Op) = fulQiyys) ",
where the last isomorphism is from relative version of Serre duality. (Once again,
the isomorphism follows from the usual Serre duality on the fibers.) Recalling w =
fe(Q,s), this leaves us with

W ff (Q5)Y = w
But note that the middle term is just QL since f is proper and smooth with connected

fibers. (In particular, (1) Og ~ f.Og and (2) QY is locally free of finite rank.) Thus,
we are left with w ® Q¥ — w™!, which yields the Kodaira-Spencer map

(2) K—SE/S . wgg — Q}S
5.3. Universal Elliptic Curve. In light of the Kodaira-Spencer map, our immediate
objectives are self-explanatory:

(1) Construct an elliptic curve over S = X = I'\H*.
(2) Show in this case that KS is an isomorphism (at least, up to twisting by the
divisor of cusps).

The first point will really be divided into three steps:

(a) Construct an elliptic curve over S = H.

(b) Descend the short exact sequence (1) and the Kodaira-Spencer map (2) from
S=HtoS=Yr=I\H

(c¢) Extend both to the compactification Xr.

We naturally begin with (1a). We employ the fact that H (in particular, SLo(Z)\H)
parametrizes complex elliptic curves C/(1,7) by the variable 7 € H to construct a
relative elliptic curve over H, which we denote f*":&*" — H.

Definition 5.10 (Elliptic Curve over H). We construct 2" : 2" — H in three steps.
(1) Consider the lattice
A=7ZxH—=CxH
((m,n),z) = (m+nz,z).
(2) Consider the quotient top space (C x H)/A where (7,2) ~ (7 + A, z) for A € A..
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(3) The projection map 7 : C x H — (C x H)/A is a priori just a local C*-
isomorphism, but one can endow C x H with a unique complex manifold struc-
ture such that 7 is a local biholomorphism. We denote C x H with the complex
structure as £*".

As mentioned before, when S is connected (as is the case for S = H), the higher direct
image R!f,Z must be constant. As we will soon care about an explicit isomorphism
R'f.Z = Z?, we construct such an isomorphism a®" in the case f = f*. To define
such isomorphisms, we will fix once and for all i = v/—1 € C.

Example 5.11 (R! f2Z is constant). We will construct a map o : R' f2Z — Z*. The
key is to identify Z2? ~ H'(C/ (1,4) ,7Z); note that this requires a choice of basis for Z?,
as canonically from Poincaré duality we have Z* ~ H,(C/ (1,i),Z) ~ H(C/ (1,1) ,Z)".
We have a C*-isomorphism

(v + iy, 2) » > (74 2y, 2)

CxH = » Cx H
\H/

which induces a C*°-isomorphism (C/ (1,7)) x H — £*" over H, as shown below.

(C/(1,i)) x H &8 (C x H)/A

| [

H id s H

The push-pull map [Vak25, §2.7.4] gives us a natural map f{"Z — pry , Z, which further
induces a map on the derived pushforward R!f*Z — R! pry . Z. But on fibers, the
latter is canonically isomorphic to H'(C/ (1,i),Z) ~ (Z*)" everywhere, so we have the
map R!'f*Z — (Z*)", which we can easily check on stalks to be an isomorphism.

The last minor step is to specify an isomorphism (Z?)V ~ Z2. Following [Del71,
§2.1], we will select an orientation-reversing isomorphism so that the composition o :
R'fa7 = (Z?)" ~ Z* makes the following diagram anti-commutative:

2 an
/\2 lefnz /\_O‘> /\QZZ

o] = lg

R ———— L

Remark 5.12. The right vertical arrow is, given a choice of basis {e;, €2} of Z?, the map
e1 ANeg — 1, the left vertical arrow is the relative cup product which one can check is an

isomorphism on its stalks, and the bottom map is the canonical map from Proposition
5.6.
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Definition 5.13 (Permitted Isomorphism). Following Deligne, we say an isomorphism
a: R'f.7.— Z?* for some relative elliptic curve f is permitted if it satisfies the above
anti-commutative diagram.

We maintain a fixed i = /—1 € C, and we define H such that ¢ € H. Consider the
functor AnSps — Set which associates to a complex analytic space S the set of pairs
(f : E = S,a:R'f,Z = Z*) where f gives an S-elliptic curve and « is permissible.
Our construction (f*", o) is significant in the following way.

Proposition 5.14. This functor is representable by (f* : £ — H, o™ : R' fZ =
z?).

Remark 5.15. One can define a similar functor for relative complex tori of a specified
relative dimension, where the associated set must also carry the data of a principal
polarization on the complex torus. Such a functor will always be representable, see
[Con05, Theorem 1.4.3.1].

Remark 5.16. Sometimes we will refer to this universal object abstractly as f : Ex — X
for more natural notation, but for the proceeding, it is always kosher to choose a base
point ¢ and work with the coordinate-specified version f*".

We wish to study the short exact sequence (1) and the Kodaira-Spencer map (2) for
this universal relative elliptic curve (f : Ex — X, ax) = (f* : £ — H, o®). The map
o™ gives us a de facto isomorphism R' f2Z ~ Z*. In this setting, the Kodaira-Spencer
map will also be an isomorphism.

In fact, it is equivariant under SLy(R), whose action we now describe. The SLo(R)-
action on Q% comes from the natural action on X = H. For w, the universal property
of (f : Ex — X,ax) means that the isomorphism v o ay : R'f,R = R? 5 R? for
any 7 € SLy(R) induces an SLy(R)-action on R'f.R, which we can then descend to
w™! via the surjection R'f,R ®r Ox — w™! from the short exact sequence. Taking the
standpoint that modular forms of weight k should be global sections of w®*, we have
that this SLy(R)-action gives exactly the automorphy condition for modular forms, see

[Del71, §2.3].

Theorem 5.17. For the universal elliptic curve Ex — X, the Kodaira-Spencer map
KSp, /x: W — QL is an SLy(R)-equivariant isomorphism.

Almost tautologically, the short exact sequence (1) becomes SLs(R)-equivariant as
well. For a complete description of the SLy(IR)-action on each sheaf and the equivariance
of the short exact sequence, consult [Con05, Lemma 1.5.4.4].

5.4. Descent to Modular Curves. From this SLy(R)-equivariance, one expects to
produce both the short exact sequence and the Kodaira-Spencer map (as an isomor-
phism) for the relative elliptic curve over the base space Yr := I'\H, where I' C SLy(R)
is a Fuchsian group of the first kind (meaning I'\H* is compact, see [Shi71, §1.5]).
Indeed, one can perform such a descent along H — Yr via Grothendieck’s theory of
descent, which we describe in the topological setting.
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Definition 5.18 (I-sheaf). Let 7 : X — S be a covering map of topological spaces, and
let T be a group of (right) S-automorphisms of X which acts transitively on fibers and
freely on X. A I'-sheaf on X is a sheaf F equipped with isomorphisms «., : v*F =S F
for each v € I' C Autg(X) which satisfy the relations o, o v*a, = «,,. Note this
endows a (left) [-action on F.

Theorem 5.19. Tuke the setup (7 : X — S,I' C Autg(X)) as in the above definition.
There 1s an equivalence of categories between I'-sheaves of sets on X and sheaves of sets
on S, where G+ G and F — m.(F)' (the T-invariant sections of m.(F)).

Denote fr : H — T'\H = Y, and let wy,. == fr.(wx)". Applying this to R? gives us
a local system Uy, of 2-dimensional R-vector spaces on Yr. We thus have a sequence

(3) 0 = wyp — Uy @ Oy, — wyt — 0.

This is clearly left-exact because both the direct image and taking ['-invariants are in
general left-exact. Right-exactness follows from the SLy(R)-equivariance, so taking the
[-invariants should preserve surjectivity on the stalks. In a similar vein, we descend
the Kodaira-Spencer map to an isomorphism KSy. : w” = Q3.

To complete our reformulation of modular forms, we need to extend the Kodaira-
Spencer map to the cusps, i.e., define it for the base space Xp := I'\H*. It turns out
that one can only do this when all cusps of Xt are regular, as defined below.

Definition 5.20 (Regular, Irregular). Let s € T\P!(Q) be a cusp, and v € SLy(R)
such that vs = i0o. Then, we have by definition

(1) ora) = 1) (g )

3

and hence 7T,y ! = (0

z
};) for ¢ € {£1}. We say s is regular if ¢ = 41 and

irregular if e = —1.

If there are no irregular cusps in X, then we can extend the Kodaira-Spencer iso-
morphism by twisting the sheaf of differentials by the divisor of cusps.

Theorem 5.21. Let I' C SLy(R) be a Fuchsian group of the first kind such that Xy
has no irreqular cusps. Then, the Kodaira-Spencer map KSy. induces an isomorphism

KSy, : w$ = Q (cusps).

For a complete proof, including a discussion of regular cusps, see [Con05, §1.5.6-7].
Intuitively, extending to the cusps involves working locally at the cusp. Taking the
cusp at infinity, for instance, our local coordinates are ¢ = €2™*, so dq/q = 2mi dz. This
indicates that we should allow for simple poles at the cusps.

5.5. Modular Forms and the Eichler-Shimura Map. We are now ready to define
modular forms cohomologically and construct the Eichler-Shimura map (which will
evidently recover our construction from before) using this framework.
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Definition 5.22 (Modular Forms). Let £k > 2 be an integer and I' C SLy(R) be a
Fuchsian group of the first kind. Then, the space of modular forms of weight £
with respect to I' (with coefficients in C) is the C-vector space

M, (T, C) == H(Xr,wF).
The space of cusp forms (of weight k£ with respect to I') is the subspace
Si(T,C) == H*(Xp, wF (—cusps)).
Note by KSy,, so long as all cusps are regular, we can write these spaces as (for k& > 0)
Mio(I',C) = HO(XF,w?ékH)) = HO(XF,w?;]F“ ® O, (cusps))

and

Sr12(I,C) = H(Xr, w§£k+2) (—cusps))

= H(Xr,w$ (—cusps) ® Q. (cusps))

r

This is nice, because we can utilize the short exact sequence (1) for X = Y to
produce the Eichler-Shimura map. Note after descent, we have a short exact sequence

(3)
0— Wyr L) qu ®K OYF — w{,rl — 0.
For notational simplicity, we henceforth replace all subscripts Yr with just I', i.e., we
denote wr = wy;, Ur = Uy, Qp == Q. , and Op = Oy;..
But note from the construction of Equation 1 that this sequence is exact from the
Hodge decomposition for n = 1, so in particular, it is locally split. Therefore, taking
the k' tensor power preserves exactness, and we have an injection

P8R ey Symﬁup ®r Or.

Furthermore, 2} is a line bundle on Yr, hence locally free, so tensoring by it preserves
exactness. This means we get an inclusion

Lk X 1dQ1 : wf?k X Ql{ — Sym&blp ®R Q%‘
This induces an inclusion on the global sections. The long exact sequence for de
Rham cohomology on Xt further gives a connecting map H(Yr, Symﬁ Ur @g Q) AN
H(Yr, Sym& Ur ®g C), hence in total we have the composition

Feid

HO(Yr,w2* @ Qb) =25 HO(Yr, Symb U @ QF) 5 H'(Yr, Symf Uy @ C).

The ®gC at the end means the H' on the right is equipped with an action of complex
conjugation. Applying complex conjugation to the first term (the space of meromorphic

modular forms) gives us a map HO(Yp, w* @ QL) — H'(Yy, Symg Ur @p C), hence we
get the map

H(Yr,wi* @ QF) @ HO(Yr, wi* @ Q) — H'(Yr, Symg Ur ®g C).
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Pre-composing with the natural inclusion HO(Xp,w?}llf ® Q,.) = HO(Yr,wi* ® Qy.)
gives us the Eichler-Shimura map

(4) ESF . Sk+2(F, (C) @ Sk+2<r, (C) — I‘I1 (YF, Sym&blp ®B Q)

As in 1.2, one can define the interior cohomology group H; (Yr, Sym& Ur @r C) C

H(Yr, Sym& Ur ®g C). We justify that, as in our original statement of the Eichler-
Shimura isomorphism, the image of ESr lives in the interior cohomology part.

Lemma 5.23. Given the map ESr above, its image is contained in H'(Yr, Symﬁup QR

Q).

Proof. By identifying our local system Symﬁ Ur with L(n, R)F (amounting to choosing

a basis of R? locally, which provides a basis everywhere via action by SLy(R)), we can
recover the explicit form of f as an element in H°(Yr, Symg Ur ®g QF) as in §2.

frwr=(X-2Y)"® f(2)d=.
The connecting map for de Rham cohomology is explicitly given by

HO(Yr, Sym@bfr ®r ) 2 H'(Yr, Symﬁbfr ®r C)

o (e o).

For each cusp s € I'\P*(Q), denote D? as some sufficiently small punctured open disk
around s in Yp. The connecting map commutes with restriction, so to show d(wy) €
H}(Yr, Symf Ur ®g C), it suffices to show that & (wy|p:) vanishes for each cusp s. But
H,(D:,7) = m (D) is generated by a loop around s, hence for some loop o generating
m1(D}), it suffices to show that [ w; = 0.

Let v € SLy(RR) such that s = ioco. Since s is assumed to be a regular cusp, we have
syt = (§ ") for some h > 0. Thus, after sending s to ico via conjugation by v, we
have that a loop around s = ico generating m (D7) must lift in H to a path from a + ib
to a + h + ib for some large enough b > 0 and a € R. But since f is a cusp form, it

decays exponentially as b — oo, hence

a+h+ib
lim wr =0

and the conclusion follows. O

With this, we can restrict the image of ESp to the interior cohomology. By doing so,
we claim that the map is an isomorphism.

Theorem 5.24 (Eichler-Shimura isomorphism). The map
ESr : Spt2(I, C) @ Spp2(T, C) — H,' (Yy, Symg Ur @ C)

1S an tsomorphism.
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After translating this map to the “classical” setting in the first half of this exposition,
one can prove injectivity as in §3. We concern ourselves, then, with proving surjectivity
in the final section.

6. PROOF OF SURJECTIVITY, VERSION 2

Given injectivity, it suffices to prove the dimensions (over R) on both sides agree, or
in other words

4dime H*(Xr, w$F @ Q) = 4dimg Sp42(T, C)
= dims (Sis>(I', ) © §ia(T, )

~ dimg H} (Yr, SymﬁUp ®r C)
= 2dim¢ H!1 (Yr, Symﬁblp ®r C)
= 2dimg H (Yr, Symg Ur).

The advantage of having defined modular forms as some zeroth cohomology is that
computing its dimension is immediate from Riemann—Roch.

Theorem 6.1 (Dimension of Space of Cusp Forms). Let g and ¢ denote the genus and
number of cusps of Xr, respectively. For k > 0, we have

k
dime Spo(0,C) = (k+1)(g — 1) + 76

Proof. 1t is standard that deg Q&F = 2g — 2 (it is the canonical bundle, since Xt is a

curve). From the Kodaira-Spencer map KSy, : wg? = %, (cusps), we see that

2degwx, =29 —2+c

== degw%fzk(g—l%-g)

= deg (wF @) =(k+2)(g— 1)+ %
When degwyx,. > 0, Riemann-Roch gives us the desired result, so it suffices to show
that this inequality must be true.

Since ¢ > 0, we see that at best, degwx, > —1. If degwx, = —1, then g = 0 and
¢ = 0, which is only possible if Xt ~ P{. But we know X admits H as its universal
cover by construction, so this is not possible. If degwx, = 0, then we either have
(g,¢) € {(1,0),(0,2)}. The latter situation implies Xt ~ P{ again and Yt is the sphere
with two points removed. We have 71(Yr) ~ Z, but this should agree with I' modulo
its elliptic and parabolic elements, all of which have finite order. But Z, embedded into
SLy(R) as ({ #), does not have finite covolume in SLy(R), so this cannot be possible.
Finally, if (g, ¢) = (1,0), then X is an elliptic curve, whose universal cover is C (namely,
not H). O

Corollary 6.2. There are no modular forms of negative weight, i.e., for k <0,

H(Xp,w¥) =0.

T
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Proof. This is a direct consequence of deg wx, > 0, as established in the proof above. [

We now turn our attention to the interior cohomology group. It remains to show
dimg H,' (Yy, Symg Ur) = 2(k + 1)(g — 1) + ke.

Remark 6.3 (Notation). From now on, we denote h’ (for * = ¢,!,0) as dimg H:. Fur-
thermore, as all sheaves will be the local system Symﬁ Ur, we will suppress it, so hi(X)
should be understood as dimg H!(X, Symﬁ Ur) unless otherwise specified.

Recall from §1.2 that we have the long exact sequence

0 —— HY(Yr, Symg Up) —— HO(Yr, Symg Ur) —— @,cpp1(q) HO(D;, Symg Ur)
H(Yp, Symg Up) —— H'(Yp, Symg Ur) —— @ cp\pi(g) H' (D5, Symg Ur)

HZ(Yp, Symg Ur) —— H>(Yp, Symg Ur) —— @ cp\p1(g) H* (D5, Symg Ur)
We will boil our proof down to three lemmata. We state them below, then show how
they imply our desired equality on h{ (Yr), then prove each lemma separately.
Lemma 6.4. Let x(X,F) be the Euler characteristic of F as a sheaf on X. Then,

(2) K(Dy) = h'(D;) =1, and
(3) h°(Yr) = h?(Yr) = h2(Yr) = 0.

Assuming Lemma 6.4, the proof of surjectivity goes as follows. We seek to compute
hi(Yr) = hi(Yr) — 2, h°(D?). From (3), we can truncate the cohomology long exact

sequence and get
Zho — Rl (Yp) + R (YY) Zhl

From (2), this implies 2!(Yr) = h'(Yr). Thus, we have

(from above) he(Yr) YY)

(by (1)) O(Yr) + *(Yr) + (k+1)(2g — 2 + ¢)
(by (3)) =(k+1)(29 - 2+0),

and then (2) again gives us

h
h

hi(Yr) = Zho (DY) =(k+1)(29—24¢)—c=2(k+1)(g — 1) + ke

as desired.
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Proof of (1). We first show x(Yr, SymgUr) = (k + 1)x(Yr,R), then show x(Yy,R) =
2—-2g—c B

We construct a nice triangulation T of Xt as in the beginning of the proof of Propo-
sition 4.4, in particular one where all cusps are included among the vertices. We then
consider the open cover U, = {U; }ie; of Y consisting of the following open subsets:

e the interiors of all triangles in ¥

e pairwise disjoint tubular neighborhoods of each edge of ¥ with the vertices
removed

e small open balls around each non-cusp vertex in ¥

As all opens and their finite intersections are contractible, U, is a “good” cover for
Cech cohomology. Note that, as expected from H® vanishing on a curve, any intersection
between four open sets is empty, so the associated Cech complex only has terms up to
degree 2. By a standard comparison theorem between sheaf and Cech cohomology, we
have

x(Yr, Sym§ Ur) = B°(Yr) — h' (Yr) + B*(Yr) = R°(U.) — h' (U) + h*(U.)
= dimg C°(U,, Sym§ Ur) — dimg C" (U, Sym§, Ur)
+ dimg C*(U,, Symﬁup)

where A'(U,) = dimg H'(Us, Sym§ Ur) and C*(U., Symg Ur) is the Cech complex for
Symﬁ Ur with respect to the open cover U,. But note the Cech complex only sees the

sheaf locally, so replacing Symﬁ Ur with R*! would not change the terms of the Cech
complex (although it would change the chain maps). In particular, we have

x(Yr, Sym&bﬁ“) = Z(—l)%i(U-)
= (~1)" dimg C*(U,, Sym Ur)
= 5" (~1)" dimg C'(Us, R**Y)

=) (=1)'(k + 1)dimg C'(U., R)

[en]

_ (k+ Dx(YiuB).

It is standard that since Xt is a compact Riemann surface, its Euler characteristic
is x(Xr,R) = 2 —2g9. To prove x(Yr,R) = 2 — 29 — ¢, it thus suffices to show that
removing a cusp decreases the Euler characteristic by 1.

The Mayer-Vietoris sequence on the open cover Xr = (Xr \ {s}) U D;, for some
small open disk Dy around a cusp s, gives us the relation

x(Xr ~ {s}) + x(Ds) = x(Xr) + x(D}).
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Note that D is homotopy equivalent to the unit circle S*, which has Euler charac-
teristic 0. It is also standard that x(Ds) = 1, so it follows that

X(Xr) = x(Xr N {s}) + 1,
as desired. 0

*

Proof of (2). We run the same argument in the above proof for D, namely that the
Euler characteristic of a local system only depends on the rank of the local system, to
obtain

X(D3, Symg Ur) = h*(D7) = k(D7) + h*(D7) = (k + 1)x (D7, R) = 0,

where the last equality follows from D} being homotopy equivalent to a unit circle,
which has Euler characteristic 0. Any H? of the unit circle will vanish, hence we are
left with (D7) = h(D?).

Finally, we can deduce h°(D¥) = 1 from Lemma 4.7, which in the case G = m(D}) =
Z, X = R, and 7 : R - D! ~ S! the universal cover of D} gives the isomor-
phisms H'(m(D?), Sym" R?) ~ HY(D*, Symf Up). We clarify that the 7 (D?)-action
on Sym*R? is induced by the Z-action on R?, where we identify Z with the sta-
bilizer (3"*) C SLy(R) of s. But this action clearly has just a one-dimensional

invariant subspace for the induced action on SymFR?, hence for i = 0, we deduce
hY(D:, Symg Ur) = 1. O

Proof of (3). For alocal system Lr of finite-dimensional R-vector spaces on Y, the cup
product

Hi(Yr, L) ® HX (Yr, £Y) — H2(Yr,R) = R

is perfect, as it is perfect locally due to Poincaré duality. For Lr = Sym& Ur, we can

use the pairing B in the proof of injectivity (§3) to deduce that Symﬁ Ur is self-dual,
hence we have that

H?(Yr, Symyg Ur) ~ H)(Yr, Symg Ur) C H(Yr, Symg Ur) ~ H2(Yr, Symg Ur).

Thus, it remains to prove H°(Yy, Sympg Ur) = 0 for k > 0. From the proof of (2), this
is the space of I-invariants of Sym” R? ~ L(n,R). For the rest of the proof, we will
utilize the perfect pairing B : L(n,C) x L(n,C) — C given in the proof of injectivity,
§3. From now on, we identify Sym” R? with L(n,R). Choose some v € L(n,R)\ =
HO(Yp, Symf, Ur). We define the complex-valued polynomial

p(2) = Blv® (2X + Y)¥), z € C.

Since B is a perfect pairing, in order to force v = 0, it suffices to show p = 0.
Following Corollary 6.2, it suffices to show p(z) is a modular form with respect to I of
negative weight. As p(z) is just a polynomial, it is clearly holomorphic. It thus remains
to check (a) p(z) satisfies the automorphy condition and (b) it is bounded at the cusps.



REFERENCES 29

Choose some 7 = (¢%) € T'. By construction, we have v = yv. Furthermore, one
can show explicitly (as we did in class) that B is SLy(R)-equivariant, hence we have

p(v2) = B (v ® ((v2)X +Y)¥)
=B <v ® ((va)y ' X + 7_1Y)k>
=(cz+d)"Bv® ((az +b)(dX — cY) + (cz + d)(—=bX +aY))¥)
=(cz+d)*Bv® (zX +Y)F)
= (cz+d)*p(2),

demonstrating (a). The boundedness condition (b) follows from the facts that p(z) is
a polynomial yet, by (a), it is invariant under a translation z — z + h (where (%)
generates the stabilizer of ico in I'). In fact, this forces p(z) to be constant, and the

automorphy condition requires this constant to be 0. O
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